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Foreword 

In its continuing effort to broaden the scope of approach toward 
solving the growing, intricate problems arising from increasinguse 
of the automobile, the Eno Foundationwelcomes the opportunity 
to publishand distribute this book. 

ENO FOUNDATION 

Preface 

In traffic engineering there is an extensive use ofquantitative data 
in the planning, design and operation of transportation facilities. 
Frequently there is an urgent need for drawing conclusions and 
making decisions on the basis of this data. As a result, traffic en­
gineers are often faced by difficult statistical problems-i.e., prob­
lems in thecollection, analysisand interpretation ofdata. Moreover, 
these problems become increasinglycomplex as traffic engineering 
technology advances. Many traffic engineers would therefore be 
helpedby having a reallymodernaccountofthe statisticalapproach 
to traffic engineering problems. Our aim in writing this book is to 
meet their needs. 

To avoid "riding off in all directions at once," we decided to 
focus attention on one area of statistics-namely, sampling-and 
to show, in depth, how it relates to traffic engineering. Sampling 
was selected since it is broadly applicable to traffic engineeringand 
since its essential ideas can be grasped readily. The theme of this 
book is that sampling is apowerful toolfor theplanning and design of traffic 
engineering studies and the analysis of data obtainedfrom them. 

The concepts that underlie sampling are presented and illus­
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4 ELEMENTARY SAMPLING 

trated in Chapter I which places special emphasis on the concepts 
offiopulation and sample. The methods ofclassical statistical inference 
are introduced and applied in the subsequent chapters. Point and 
interval estimation of population characteristics are treated in 
Chapters 2 and 3, respectively; significance testing is treated in 
Chapter 4; Chapter 5 gives traffic engineering applications of the 
ideas presented in the first four chapters. The scope of the book 
includes sampling from any of a broad class of populations; how­
ever, the main emphasis throughout is on sampling from binomial, 
Poisson, and normal populations. 

It was necessary to assume that most readers would not be 
familiar with statistics. As a result the book is quite elementary in 
a statistical sense, and many potentialapplications of sampling to 
traffic engineering had to be omitted. For example, techniques of 
correlation, regression, and the analysis of variance have not been 
treated, and relatively little discussionof sample surveys has been 
included. The mathematical level of the book is also elementary; 
in fact, a knowledge of calculus is not necessary for understanding 
the subject matter. 

We are indebtedto A. M. Mood and the McGraw-HillBook Com­
pany for permission to use Appendix Table 1, to Professor E. S. 
Pearson, editor ofBiometrika, and the Biometrika Office for permis­
sion to include Figure I and Appendix Table 2; to Sir Ronald A. 
Fisher and Frank Yates, and Messrs. Oliver and Boyd, Ltd., Edin­
burgh, for permission to include Appendix Table 3; to the Rand 
Corporationand The Free Press for permissionto include Appendix 
Table 4; and to W. E. Ricker and the editor of the Journal of the 
American Statistical Association for permission to include Table VI. 

We wish to express our appreciation to Mr. William R. McGrath 
ofthe City of New Haven for his review of the manuscript, and to 
Mr. MatthewJ. Huber of the Yale University Bureau of Highway 
Traffic for helpful discussion of certain points regarding short 
counts. We also wish to express appreciationto the Eno Foundation 
for counsel and support. 

Winchester, Massachusetts 
New Haven, Connecticut 
March, r962 

D. F. V., JR. 

H. S. L. 



Contents 

Foreword 	 3 

Preface 	 3 

List of Figures 	 7 

List of Tables 	 8 

Chapter 1: Introduction 
1. I Preliminary Remarks 	 9 
1.2 Some Important Definitions and Concepts I I 

Chapter 2: Point Estimation 
2.1 Definitions and Notation 	 15 
2.2 Estimation ofthe Parameter of a Binomial Distribution 1 7 
2.3 Estimation ofthe Parameter of a Poisson Distribution i8 
2.4 Estimation ofthe Parameters ofa Normal Distribution i8 
2.5 Estimation of Percent Points (Percentiles) I 9 

Chapter 3: Interval Estimation 
3.1 Definitions and Notation 	 2 I 

3.2 	 Interval Estimationof the Parameter ofa Binomial 
Distribution 22 

3.3 	 Interval Estimation ofthe Parameter of a Poisson. 
Distribution 30 

3.4 	 Interval Estimation ofthe Parameters ofa Normal 
Distribution 33 

3.5 Interval Estimation of the Mean of a Distribution 36 
3.6 Interval Estimation ofPercent Points of a Distribution 38 

Chapter 4: Test of Hypotheses (Significance Tests) 
4.1 Introduction 	 V 
4.2 Significance Tests Based on Confidence Intervals 47 

5 



6 	 ELEMENTARY SAMPLING 

4.3 Contingency Tables 	 48

4.4 Significance Tests Regarding Population Means 55

4.5 A Test for Equality ofVariances (The F-test) 59


Chapter 5: Case Studies and Applications 

5.1 Sample Size and Survey Design 	 6i 
5.2 Techniques of Sampling 	 63

5.3 	 Absolute and Relative Error in Estimating the


Binomial Parameter 72


5.4 	 Determining Sample Size for Estimating the Mean 
of a Population 8o 

5.5 "Before-and-After" Studies 	 82


5.6 Randomness ofTraffic 	 86

5.7 	 Estimation of Traffic Volume by Means of Short


Counts 87

5.8 Concluding Remarks 	 101


Appendix 

1. Populations and Samples 	 I03 
2. Functions ofSamples 	 104

3. Random Variables and Probability Distributions io6 
4. Some Important Probability Distributions I08 

Appendix Tables 

Comments Regarding Tables II2


Appendix Table 1. The Cumulative Standard Normal

Distribution 114


Appendix Table 2. The Cumulative Chi-square

Distribution ii6


Appendix Table 3. The Cumulative Student's

t-Distribution ii8


Appendix Table 4. 2000 Random Digits 120


Bibliography 	 I22 

Author and Subject Indexes 	 I24 



List ofFigures 

1. Confidence Belts for Proportions 	 24


2. 	 Line Graph ofthe Poisson Frequency Function

(see Example A-Section 4.1) 44


3. 	 Line Graph of the Poisson Frequency Function

(see Example B-Section 4.1) 46


4. Relative Error in Estimating the Binomial Parameter 78


5. 	 Schematic Representationofthe Base Period (T', T"),

The Short-Count Periods, and the

Population of Short Counts 89


6. 	 Schematic Representation ofthe Base Period, the

Short-Count Periods, the Population of Short

Counts, and the Systematic Sample 96


7




List of Tables


1. Effect of Sample Size On Accuracy of Estimating 
the Probabilityof Heads in Coin Tossing Io 

II. Examples ofPopulations and Samples Considered 
in Traffic Engineering I I 

III. Some Important Frequency Functions I3 

IV. Formulas for Approximate IOOA Percent Confidence 
Intervals for the Binomial Parameter 26 

V. 	 Values ofz,, Associated with Certain Confidence 
Coefficients 27 

VI. 	Confidence Limits for the Parameter of the 
Poisson Distribution 31 

VII. 	2 x 2 Contingency Table 49 

VIII. 	Travel Modes of CBD Store Customers-
Pawtucket and Woonsocket, Rhode Island 52 

IX. h x k Contingency Table 	 55 

X. Uses of Figure 4 	 79 

8




Chapter 1: Introduction 

There is an important relation between statistics and traffic en­
gineering. Statistics is the science that deals with general principles 
regarding the collection, analysis, and interpretationof data. Traf­
fic engineering deals with specific applications of those principles 
in fundamental traffic research and in everyday studies-for ex­
ample, studies of traffic volumes, origins and destinations, travel 
modes and patterns, speed and delay, and parking. 

From a statisticalpointofview the trafficengineer'sdata can often 
be regarded as forming a sample from a largerpopulation. In terms of 
this point ofview, the traffic engineer's objective in collecting the 
data is to draw conclusionsor make decisionsabout the population. 
Sampling methods and concepts are directly relevant to the plan­
ning and design ofhis studiesand the analysisofdataobtainedfrom 
them. The use ofthese methods and concepts can make important 
contributionsto the effectiveness and efficiency of his work. 

The purpose of this book is to help traffic engineers in the use of 
sampling. Accordingly, emphasis is placed on techniques and ap­
plicationsrather than theory and derivation. Most ofthe techniques 
considered pertain to estimation and significance testing. Almost 
all ofthe illustrativeexamples are closelyrelated to traffic engineer­
ing practice. 

1.1. Preliminary Remarks 

Information about a population may be obtained by sampling 
from the population. The information usually becomes more ac­
curate as the "size" of the sampleincreases. In fact, the information 
is completely accurateifevery elementofthe populationis included 
in the sample. On the other hand, costs will often increase as the 
6'size" ofthe sampleincreases. Accordingly, in designing a sampling 
procedure the traffic engineer will frequently wish to consider both 
cost and accurag of information. 

The relation between "size" of the sample and accuracy of 
information can be indicated with regard to coin tossing. If a 
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"true" coin is tossed a number oftimes (e.g., 10 times), the observed 
proportion ofHeads will usuallynot be exactly equal to 1/2, which 
is the "expected" proportion of Heads (since the single-toss prob­
ability of Heads equals 1/2). The set of observed tosses can be 
regarded as a sample from a (hypothetical) population of tosses, 
and the observed proportion ofHeads can be regarded as an esti­
mate ofthe expected proportion.The numberoftosses is the sample 
size. Accuracy of informationin the sample is represented here by 
the accuracy of the estimate. 

Table 1: EfTect of Sample Size on Accuracy of


Estiniating the Probability of Heads in Coin Tossing


Range Within Which Observed Maximum 
Number of Tosses Proportion ofHeads Will Fall Per Cent 

(Sample Size) 95 percent of the Time* Deviationt 

10 0.20-0.80 60 
20 0.30-0.70 40 
30 0.34-0.66 32 
40 0.35-0.65 30 
50 0.36-0.64 28 

100 0.40-0.60 20 
250 0.44-0.56 + 12 

1000 0.47-0.53 ± 6 

*More precisely, if the single-toss probability of Heads equals 1/2 then the 
probabilityis 0. 95 (approximately) that the observed proportion ofHeads will 
fall inside the range, and the probability is 0. 05 (approximately) that the pro­
portion will fall outside the range. 

t"Maximum Per Cent Deviation" here means the percent deviation of the 
limits of the range from 1/2. For example, the first entry is ± 60 since (0. 80 ­
0. 50) / (0.50) = + 60 percent and (0. 20 - 0.50) / (0.50) = - 60 percent. 

The relation between sample size and accuracy of the estimate 
is indicated in Table 1. If the coin is tossed IO times, then the 
observed proportionof Heads is likely to be within 60 percent of 
the expected proportion (namely 1/2). On the other hand, if the 
coin is tossed 1000 times, the observed proportion is likely to be 
within 6 percent of the expected proportion. It is clear that the 
maximum percent deviation decreases as the samplesize increases. 

It is noteworthy that as the sample size increases a hundredfold 
(from 10 to 1000), the decrease in maximum percent deviation is 



II INTRODUCTION 

only tenfold (from ± 60 to ± 6). This is a typical feature of es­
timation by means of sampling. An increase in sample size does 
not yield a proportional increase in accuracy of estimation. 

1.2. Some Important Definitions and Concepts 

1.2.a. Populations and Samples. A population (or universe) is a 
class or set ofobjects. The set maybe finite or infinite. A sample from 
the population is a set ofobjects "drawn" from the population. To 
"draw" an object requires only that the object be observed; it is 
not required that the object be removed from the population. 
Further details on populations and samples are given in Section I 
of the Appendix. 

Table H: Examples of Populations and Samples

Considered in Traffic Engineering


Subject of Study Population Sample 

Daily traffic at Set of all vehicle Set ofall observed vehicle 
a given location passages past the passages past the 

location in 24 hours location in the 24-hour 
period 

Mode oftravel of Set of all people Set ofpeople entering 
people entering a store entering store store who are inter-viewed 

Spot speeds at a Set of speeds of all Set ofspeeds observed 
given location vehicles passing the 

location 

Home intervieworigin- Set ofall dwelling Set ofdwelling units 
destination study (origins units in survey area where interviews are 
and destinations of trips obtained 
in survey area) 

Trip origins ofvehicles Set of trip origins of all Set of recorded trip 
passing a given location vehicles passing the origins ofvehicles 

location passing the location 

Illustrative examples of samples and populations considered in 
traffic engineering are given in Table 11. For example, in a study 
ofvehicle speed at a given location (on a given day) the population 
would consist of the speeds of all vehicles at the time they passed 
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the location; and the sample would consist of the observed speeds of 
vehicles at the time they passed the location. Similarly, 10,000 
dwellingunits would represent a i o percentsample from a popula­
tion of iooooo dwelling units. 

It will be evident from subsequent chapters of this book that 
populations can be specified in such a way that their elements are 
numerical.Samples from such populations also consist ofnumerical 
elements. Unless otherwise indicated, the elements ofa sample will 
be represented by numerical values, say x1, X21 xI. The num­
ber, n, ofelements is called the sample size. 

Certainfunctionsofa sample are particularlyuseful. Well-known 
examples of such functions are the sample mean and the sample 
variance. These and other special functions ofsamples are described 
in Section 2 of the Appendix. 

Most ofthe sampling considered in this book is random sampling. 
Uusually the elements x1, X2, . .. , XI of a random sample will be 
regarded as observed values of a random variable whose probabiliy 
distribution involves important characteristics of the population 
being sampled.* It is appropriate to say that the objective of 
random sampling is to obtain information about the probability 
distribution of the random variable involved. 

1.2.b. Random Variables and Probability Distributions. Exam­
ples of random variables are: (1) the number that comes up when 
a die is tossed; (2) the proportion of Heads obtained in a given 
number oftosses ofa coin. (Example (2) is involved in the situation 
treated in Table I.) Each random variable considered in this book 
is characterized by afrequengfunction, which specifies the variable's 
probability distribution. The probability distribution can also be 
specified by a cumulative distributionfunction. Section 3 of the Ap­
pendix gives definitions of a random variable, a probability dis­
tribution,a cumulativedistributionfunction, a frequency function, 
and other closely related terms. 

It should be remarked here that probability theory is the source 
ofsuch concepts as random variable and frequency function; how­

*For further remarks on random sampling see Section I of the Appendix. 

For a discussion of random sampling techniques and the selection of a value 
ofa random variable see Section 5.2. 



Table III: Some Important Frequency Functions 

Name o Distribution Frequency Function Parameters 	 Examples of Applications 

Populations having two 

PX) = Q, fix O -P p =probability ofa categonest (e.g., "Suc-
Binomial given category cesses" and "Failures," 

(Cx"is a binomial coefficient*) local vehicles and non-
local vehicles, etc.). 

e - W m =expected value Random arrival of 
Poisson PX) = X! (mean) cars in a parking 

garage entrance. 

1 e- (x _ u) 2 /2a 2 u =expected value Studies ofspot speeds, 
Normal PX) = (mean) reaction times, etc. 

a 2=variance 

CalculationsStandard e- X2/2 U=0 

Normal f (X) = / (2n) a2 involving normal 
distributions. 

CNI CN-NI 
f(X) = x n- x


CN

n 

N= Populationsize. 
N,/N=Proportion

Hypergeometric N, =No. of "successes"inpopulation of "Successes1 	 Finite binomial5 

n =Sample size. in population population. 
x = No. of"Successes" in sample. 

(CN 1, CN - N 1, CN are binomial 
X HX n

coefficients*) 

Pn, n nk) n! pn, pn2 ... pn k 
2) ... i nj ! n. 1 2 k Populations having 

Multinomial 	 (n, +n,+. . . +nk n). k categories. 
The parameters are p, p, ',Pk, wherepi= (k > 2). 
probability of drawing category i (P I +P2 + - - - +Pk 

*The definition of a binomial coefficient is given below the first formula in Section 4 of the Appendix. 
t f n effect the populations are assumed to be infinite (see Section 2.2). 
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ever, a treatment of probability theory is beyond the scope of this 
book. An excellent account of the subject is given by Feller.* 

1.2.c. Important Frequency Functions. Several frequency func­
tions important in traffic engineering are presented in Table III 
and are described in further detail in Section 4 of the Appendix. 
They are the binomial, Poisson, normal, standard normal, hypergeometric, 
and multinomial frequency functions. In almost every case only a 
small number of parameterst is involved. For example, the bino­
mial and Poissonfrequencyfunctions are each characterizedby one 
parameter and the normal frequency function is characterized by 
two. The parameter in the binomial is represented by p, and the 
parameter in the Poisson is represented by m; the parameters in 
the normal frequency function are represented by u and a'. 

Typical traffic engineering applications of these frequency func­
tions are also shown in Table 111. For example, the distribution of 
the number of cars arriving at a garage often follows a Poisson 
frequency function (see Gerlough); and the distribution of spot 
speeds usually follows a normal frequency function. 

*The Bibliography of this book (pp. 122-123) gives a complete reference to 
the book by Feller and to all other literaturereferred to in the text. 

tA population average (or mean) is an example of a parameter contained 
in many frequency functions. A parameterof afrequency function is, of course, 
a parameter of the probability distribution specified by the frequency function. 
Similarly, a parameter of a cumulative distribution function is a parameter of 
the probability distribution specified by the cumulative distribution function. 



Chapter 2: Point Estimation 

As indicated in Chapter 1, the objective of sampling is to obtain 
information about the probability distribution associated with a 
group of observations. Often it is desirable to use this information 
to estimate some characteristic of the distribution-for example, a 
parameter such as the mean* of the distribution. 

There are two basic types of statistical estimation-namely, 
point estimation and interval estimation. The subject matter dealt 
with in this chapter is mainly the point estimation of parameters 
ofbinomial, Poisson, and normal distributions, and offiercentpoints* 
ofdistributions. Intervalestimationofsuch quantities is considered 
in Chapter 3. 

It should be remarked that sometimes a characteristic of a dis­
tribution will be referred to as a characteristic of a population. 
Accordingly, a parameter of a distribution will be referred to as a 
population parameter. More specifically, the mean ofa distribution 
will be referred to as a population mean. When a population is 
finite, the populationmeanis, ofcourse, the average ofthe elements 
of the population. 

2.1. Definitions and Notation 

When a single number obtained from a sample is used as an 
estimate of a population parameter, it is called a point estimate of 
the parameter. An analytic discussion of this and related concepts 
is given below. 

Let 0 represent a parameter of the distribution of a random 
variable, say X. The value of 0 is assumed to be unknown to the 
investigator, and his aim is to estimate the value of0 on basis of a 
sample xi, x2, ... ' X,. To accomplish his purpose the investigator 
makes use of a function, say 0 (XI, X21 ... I X0, of the sample. For 
example, if 0 is the mean of the distribution, then in many cases a 
suitable function to use is 
 (XI, X21 - - ', Xn) = (XI + X2 + - - - + 

X,,) / n, which is the average of the sample (or sample mean). A 

*Definitions of the mean of a distribution and apercent point of a distribution 
are given in Section 3 ofthe Appendix. 

I5 
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function (x,, x, . . ., x,,) is called an estimator of 0. The value of 
0 (xi, x 2., . ., X.) in any given sample is called a point estimate of 0. 
For convenience, the function b (XI, X21 X.) will be represented 
simply by 0. 

The ideas presented above will now be illustrated. Suppose that 
one wishes to estimate the average trip length from home to place 
of work for heads ofhouseholds in a certain community. Suppose 
further that a random sample of heads of household is obtained, 
and that the average distance for those in the sample turns out to 
be 2.7 miles. In this illustration0 is represented by the (unknown) 
population average, 0 is represented by the sample average, and 
the point estimate of 0 is represented by the observed value of the 
sample average-namely 2.7 miles. 

In advance of drawing a sample an estimator, 0, is a random 
variable. 6 is said to be an unbiassed estimator of 0 if its expected 
value (mean) equals the value of 0. Exact or approximate unbi­
assedness is a desirable property of an estimator. The estimators 
used in this book have that and other desirable properties. When­
ever possible, the estimatorsused herein are maximum-likelihoodesti­
mators. For a discussion of the principle of maximum-likelihood 
estimation and the properties of good estimators, see Mood (pp. 
147-161). 

Notation for Parameters of Certain Distributions

And Estimates of the Parameters


Distribution Parameter(s) Estimate* of Parameter 

Binomial p fi


Poisson m ?h


u

Normal 

U2 

In Sections 2.2, 2.3, and 2.4 estimation of parameters of the 
binomial, Poisson, and normal distributions is considered. The 
notation used in these sections is indicatedabove. 

*The same symbol is used for the estimate and the estimator. The estimator 

is a function and the estimate is a value of the function. 
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2.2. Estimation of the Parameter of a Binomial Distribution* 

A population having only two kinds of elements is called a 

binomial population. Examples of the elements of such populations 

are: "Successes" and "Failures"; Heads and Tails; Commercial 

Vehicles, Non-commercial Vehicles; Vehicles Turning Left (on 

entering a certain intersection), Vehicles Not Turning Left (on 

entering the intersection); Local Vehicles, Non-local Vehicles; 

Trips Between Two Given Zones, Trips Not Between Those Two 

Zones. 

Let p be the probability that an element drawn at random from 

the population is a "success." (p may be considered as the "propor­

tion" of successes in the population, and 1-p as the "proportion" 

offailures in the population.) Let a success be representedby 1 and 

a failure by 0. A sample of size n from the population consists of n 

values, say Xi, ... I Xl Where each x equals I or 0. An estimator, 

say fi, for p is 

X1 + + X, Yxi (2:1) 

n n 

Thus fi represents the fraction of cases which were successes-i.e., 

the relative frequency ofsuccesses in the sample. It is also ofinterest 

that fi in (2: 1) is the sample average (mean). The quantity nfi has 

a binomial distribution (see Table III and Section 4 of the Ap­

pendix). 

Example. Suppose there is need for an estimate ofthe proportion 

of local vehicles in the traffic flow on a major street in a certain 

community. Let P represent this proportion. Suppose further that 

50 vehiclesin the traffic are observed, and that 35 of them are local 

and 15 are non-local. Regarding these 50 cases as a sample from a 

binomial population with parameter p, compute a point estimate 

offi. Substitutingin equation (2: 1) one obtains the followingresult: 

35(l) + 15(0) 35 (2:2) 
50 = 
_o = 0.7, 

*It is assumed here that the population is infinitely large. Sampling from a 
finite binomial population is discussed in Section 3.2.b and in the Appendix. 



18 ELEMENTARY SAMPLING 

which is the point estimate of p. (Note that n = 50. Of the 50 x's 
exactly 35 are I's and 15 are O's.) 

2.3. Estimation of the Parameter of a Poisson Distribution 

The Poisson distribution is specified by the frequency function 

f (x) = e- In m' (X = 0, 1, (2:3)
X 

The parameter m is the mean of the distribution. Let xj, ... , x. 
be a sample of n values of a random variable having the Poisson 
distribution.An estimator, say i	, for the parameter is: 

XI + . .. + X, Ex, (2:4) 
n n 

which is simply the sample mean, R. (It is ofinterest that n7h (which 
equals the sample sum S(x)) has a Poisson distribution with para­
meter nm) ­

Example. In ten one-minute intervals during a certain period of 
the day the numbers of cars observed passing a given point on a 
street were, respectively, 2, 0, 6, 5, 1, 5, 3, 0, 3, 6. Assuming that 
these ten observations are a sample ofvalues of a Poisson variable, 
compute a point estimate of the parameterm (m here would be the 
theoretical average number ofcarsper minute). Substituting in (2.4) 
one finds that the estimate is 

- 2 + ... + 6 31
M = 

 = - = . . 

10 10 

2.4. Estimation of the Parameters of a Normal Distribution 

Unlike the binomial and Poisson distributions, which have only 
one parameter, the normal distributionhas two. These parameters 
are the mean of the distribution, denoted by u, and the variance of 
the distribution, denoted by U2 (see Table III). Let 9 and a2 re­
present estimators of these two parameters, based on a sample of 
size n. The sample mean (i) and sample variance (S2 ) are good 
estimators of u and C2 , respectively. Accordingly, a and P are 
chosen as follows: 
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XI + ... + X,,- = Ex!- = 9 (the sample mean), 
n n 

(2:5) 
2 (XI 2 + + (X. _ i)2 j:(xi _ g)2 

= S 
n n 

(the sample variance).* 

S., is a point estimate of the standarddeviation, a. 

Example. Assume that the speeds of 15 vehicles passing a certain 
observation point are as follows (in miles per hour); 41, 53, 48, 46, 
39, 50, 49, 52, 38, 42, 55, 44, 55, 51, 47. Regarding these observa­
tions as a sample from a normal distribution, compute point 
estimatesofthe parameters ofthe distribution.Substitutingin (2:5) 
one finds that the estimates of u and U2 are: 

d = 47.33, 

V = 28.89, 

The estimate of a is 6 = V28.89 = 5.37. 

2.5. Estimation of Percent Points (Percentiles) 

Let x(j), x(2), . . ., x(,,) be an arrangement of sample elements 
X11 X2
 ... I X. in increasing order of magnitude. For example, X(,) 
is the least value in the sample and x(n) is the largest value. The 
quantities x(j), . . ., x(,,) are called order statistics (see Section 2 of 
the Appendix). It will be assumed here that the distributionfunc­
tion F(x) is continuous and increasing for every value of x. (This 
implies that the probabilityequals I that no two xi are equal.) F (x) 
need not be a normal distribution; in fact, it can be "very" un­
symmetrical. 

An order statisticcan be regarded as an "estimator" ofa percent 
point of a distribution F(x) (see Section 3 of the Appendix). An 
example of a percent point of F(x) is the median, which is the 50 
percent point (denoted by x.., 0). This is a value of x such that half 

*The expected value of &2 in equation (2.5) is (1 - 1) a2 & 
n .Thus 2 is slightly 

biassed, although the bias decreases as n increases. In statistical work the follow­
ing unbiassed estimator of a2 is sometimesused: I(xi - 3
) 2/ (n ­
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the populationis less than or equal to the value, and halfis greater. 
Other percent points can be described in a similar way. For ex­
ample, the 85 percent point, x.,,, is a value ofx such that 85 percent 
of the population is less than or equal to this value and 15 percent 
is greater. Although a percent point is an important characteristic 
of a distribution, it is not called a parameter of the distribution. 

The order statistic x(,) (I < r :!
 n) in a sample of size n is an 
estimator ofthe 100r / (n + 1) percent pointofF(x).* For example, 
when n = 29 the order statistic x(l ) is an estimator ofthe 50 percent 
point (i.e., the median) of F(x). (Note that I OOr / (n + 1) = 50 when 
n = 29 and r = 15.) It is also of interest that in a sample of size 29 
the order statistic x(15) is the sample median (see Section 2 of the 
Appendix). In this illustration the value of the sample median 
would be a point estimate of the median of F(x). This result can 
be generalized: the value of the sample median is always a point 
estimate of the median ofF(x). 

The estimation considered in this section does not require that 
the functional form of the distribution be known. For that reason 
it is termed non-parametric or distribution-free estimation. 

Example. Suppose that it is desired to estimate the 85 percent 
point ofa distributionF(x) and thata sample ofsize I00 is available. 
A suitable estimate here might be x(,6) since 86 / 101 closely ap­
proximates 0.85. (In fact, 86 / 101 = 0.851.) 

Incidentally, when the graph of F(x) is nearly linear between 
X851,,, and X,611,,, the function 0.15 x(,5)+0.85 X(86) is a satis­
factory estimator of x.s5. 

*Note that when no two elements of the sample are equal, there are (n + 
intervals between - = , the order statistics, and + co. 



Chapter 3: Interval Estimation 

A point estimate of the value of a quantity becomes more mean­
ingful when it is accompanied by an indication of the possible 
errorof the estimate. One way of indicating the possible error is 
to specify a range (interval) that is likely to include the value of 
the quantity. Such an interval is referred to as an interval estimate 
of the value of the quantity. For example, on the basis of a survey 
one might say there is good reason to believe that the average 
length of trips in a community is between 4 and 6 miles. The 
interval in this illustration is, of course, specified by its endpoints 
-namely, 4 and 6 (miles). 

In statisticalwork a sample is used to form an interval estimate 
,which is called a confidence interval. A general description of the 
procedure is given in Section 3.1 below. 

This chapter gives confidence intervals for parameters of bino­
mial, Poisson, and normal distributions. Confidence intervals for 
population means and for percent points are also given. 

3.1. Definitions and Notation 
Let 6 be a parameter of the distribution of a random variable, 
and let xj, .. ., x,, be a random sample of n values of X. Let 

O' and O' be two functions of the sample; thus 0'= O' (x,, . . ., 
Xn) and 0'= O' (xj, . . ., xn). Assume furthermore that for any 
sample, O' is less than 0". The quantities O' and O' are represented 
in many ofthe formulas in this chapter; for instance, in (3.6) the 
quantities Wand V are examples of O' and 0", respectively. 

In advance of drawing a sample both O' and O" are random 
variables. Let it be assumed that the following equation is true, 
irrespective of the value of 0: 

Pr (O' < 0 < 0") = A, (3:1) 

where Ais a preassigned probability.* 
Formula (3:1) states: the probability that the random interval 

(O', 0") covers 0 is equal to A. The random interval (O', 0") can 

*The notation"'Pr means "the probability that" (see Section 3 of the 
Appendix.) 

2 1 
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be regarded as an "interval estimator" of 0. When a particular 
sample has been obtained, the particular interval thereby ob­
tained is termed a ION percent confidence interval for 0. 1 is called 
the confidence coefficient associated with the confidence interval. The 
particular values, say 00' and 00', assumed by O' and O', respec­
tively, are termed lower and upper IOOA percent confidence limits for 0. 

When O' and 0" are such that the probability on the left in 
equation (3:1) is always not less than ), (but not always equal 
to A), (O', O') is said to be a conservative I OOA percent confidence interval 
for 0 and the confidence limitsare said to be conservative. Conserva­
tive confidence intervals are of practical importance since it may 
be possible to calculate such intervals when "exact" confidence 
intervals cannot be calculated. 

Confidence coefficients such as 0.68, 0.95 and 0.99 are often 
used in statistical work. Since a confidence coefficient of 0.95 is 
usually satisfactory in traffic engineering studies, this value is 
used frequently in this book. It should be added, however, that 
the choice ofa confidence coefficient is a matter for the investigator 
to decide. 

The interval estimators described above can be termed "two-
sided" since there are two random endpoints, O' and 0". A "one-
sided" interval estimator for 0 can also be set up. For example, a 
function (say O-) of a sample can be chosen so that Pr (O <0) =A. 
For a particular sample the value of 0- would simply be a lower 
IOOA percent confidence limit for 0, and no upper confidence limit 
would be specified. Similarly, an upper confidence limit can be set 
up without specifying a lower confidence limit. Illustrative ex­
amples of one-sided and two-sided confidence intervals are given 
in Section 3.2.a. 

3.2. 	Interval Estimation of the Parameter of a Binomial 
Distribution 

The binomial distribution has one parameter (see Table III). 
This parameter, denoted by p, is the probability that an element 
drawn at random from a binomial population is a "success" (see 
Section 2.2). Confidence intervals for p are slightly conservative 
since the binomial distributionis discrete. 
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3.2.a. Tables and Charts. Confidence intervals for the binomial 

parameter can be obtained from various tables in the statistical 

literature. Three sets of tables will be described briefly. (For com­

plete references to each set see the Bibliography.) 

(1) The Harvard Computation Laboratog's tables of the cumulative 

binomial distribution. These tables can be used to obtain one-sided 

and two-sided confidence intervals for any given confidence co­

efficient. The sample sizes included in this table range from I to 

1000. 

(2) Pachares' tables of confidence limits. These tables give one-sided 

confidence intervals for the following confidence coefficients: 
0.95, 0.975, 0.99, and 0.995. Both types of one-sided intervals are 

given-namely, the type specified by an upper confidence limit 

and the type specified by a lower confidence limit. From these 

confidence limits one immediately obtains two-sided confidence 

intervals for the following confidence coefficients: 0.90, 0.95, 0.98, 

and 0.99. The sample sizes included in the tables are 55, 60, 65, 

. . . , I00. Various other tables ofconfidence limits for the binomial 

parameter arc listed in the paper by Pachares. 

(3) Table XI in Hald's Statistical Tables. This table gives two-

sided 95 and 99 percent confidence intervals for various values of 

x and of (n - x) from 0 to 500. x represents the number of "suc­

cesses" and n represents the sample size. From these tables one 

immediately obtains 97.5 percent and 99.5 percent one-sided 

confidence intervals. 

There are several published charts for conveniently determining 

confidence intervals for p (for example, see Dixon and Massey). 

Figure I below gives the Clopper-Pearson chart for two-sided 95 

percent confidence intervals. The sample sizes associated with the 

chart are 10, 15, 20, 30, 50, 100, 250, and 1000. Rough interpola­

tion for an intermediatesample size can be carried out easily. The 

chart can also be used to obtain one-sided 97.5 percent confidence 

intervals for fi. (See the second illustrative example below.) 

Example. Using the data in the example in Section 2.2, find a 

two-sided 95 percent confidence interval for the proportion,p, of 

local vehicles. (It will be recalled that in the example 50 vehicles 

were observed, of which 35 were local and 15 were non-local.) 
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Figure 1. Confidence Belts for Proportions-

Confidence Coefficient 0.95.


Note: This chart is reproducedwith the permissionof the authors C. J. Clopper and 
E. S. Pearson and the publishers, The Biometrika Office. 
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The observed proportion of local vehicles is 35/50=0.70. Using 

the belt in Figure I for a sample of size 50, one finds that the lower 

and upper 95 percent confidence limits are, approximately, 0.56 

and 0.83, respectively. The 95 percent confidence interval for p 

is therefore 
0.56 < p < 0.83. 

In view of these results, the traffic engineer can conclude, with 95 

percent confidence, that the proportion, p, of local vehicles is be­

tween 0.56 and 0.83. 
Second Example. Suppose that in a sample of size 100 from a 

binomial population there are 40 "successes" and 60 "failures." 

Find an upper 97.5 percent confidence limit for the probability, 

p, ofa "success." The observed proportionis 40/ 100 = 0.40. Using 

the upper boundary of the belt in Figure I for a sample of size 100, 

one finds that the upper 97.5 percent confidence limit is 0.51. In 

other words, a (one-sided) 97.5 percent confidence interval for p 

is as follows: 
p < 0.51.* 

(Note that, from Figure 1, the two-sided 95 percent confidence 

interval is found to be 0.31 <p<0.5 1.) 

3.2.b. Formulas. Formulasfor calculatingtwo-sidedapproximate 

confidenceintervals for the binomialparameter are givenin Table 

IV. These formulas are based on the normal approximations to 

the binomial and hypergeometric distributions.t A discussion of 

the accuracy of these approximationsis given in the book by Hald 

(pp. 676-691). 
The symbols used in Table IV are defined below: 

(1) p' andp' are lower and upper confidence limits, respectively 

(thus the confidence interval is p' <p <p") 

(2) n =sample size; 
(3) fi = (observed number of "successes" in n trials) / n; 

(4) N= number of elements in the population when the popula­

tion is finite; 

*Since P 
_' 0 by definition, the statement that p < 0.51 is equivalent to the 
statement that 0-< P < 0.51. 

tThe hypergeometric distribution is associated with sampling from a finite 

binomial population (see Section 4 of the Appendix). 

http:35/50=0.70


Table IV-Formulas for Approximate xoo A Percent Confidence Intervals for the Binomial Parameter* 

Infinite Population Finite Population 

Z2


P + Z A n + 4n2 Same as (3:2) with the exception that Za


2 replaced by 
+ Za 

n 
(3:2) (3:2A)

2

+Za+ )+ Z.


2n n 4n Z. 
 
N- n
 

+Z"
2

n 

Same as (3:3) with the exception that z, is 
fi - Za n replaced by 

(3:3) (MA) 

fi + Za fi P -fi) Z. V(N-n)

A n I N- I


*The notation used in Table IV is defined on pages 25 and 27. 
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(5) A= confidence coefficient; 
(6) a=(I+A)/2; 
(7) z,, =the I00a percent point ofthe standard normal distribu­

tion.* 
The relation betweenZ. and the confidencecoefficient Ais indicated 
in Table V. For example, z. = 1.960 when 2 = 0.95. 

Table V: Values of z. Associated with Certain Confidence Coefficientst 

Confidence Coefficient 
A a=(I +,Z) 12 Z, 

0.80 0.90 1.282 
0.90 0.95 1.645 
0.95 0.975 1.960 
0.98 0.99 2.326 
0.99 0.995 2.576 
0.998 0.999 3.090 
0.999 0.9995 3.291 
0.9999 0.99995 3.891 
0.99999 0.999995 4.417 

The confidence limits obtained from (3:2) and (3:3) are called 
large-sampleconfidencelimitssince they closely approximateexact 
limits when n is large. Formula (3:3) is somewhatless accurate than 
formula (3:2), but it is computationally simpler. For large values 
of n the difference between formulas (3:2) and (3:3) is negligible. 
(See the illustrativeexample below.) 

When the binomial population is finite (and the sampling is 
without replacement), (3:2) should be replaced by (3:2A) and 
(3:3) should be replaced by (MA). As indicated in Table IV, the 
formulas for the finite case are obtained from those for the infinite 
case simply by replacing z. by z,,V [(N - n) / (N - 1) ] - The quan­
tity 1[(N-n) / (N- 1)] is known as the "finite population cor­
rection" or "finite population factor." This factor lies between 
0 and 1. For fixed N the factor decreases as n increases. 

*See Section 3 of the Appendix for a definition of a percent point of a dis­
tribution. 

tThe values ofz,, and a are given as x and F(x), respectively, beneath Ap­
pendix Table 1. 
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Example. Using the example in Section 2.2, find an approximate 
95 percent confidence interval for the proportion, p, of local 
vehicles in the traffic flow. (50 vehicles were observed ofwhich 35 
were local and 15 were non-local.) With regard to this example 
the quantities n, fi, A, a, and z,, in Table IV have the following 
values: 

n = 50, 
fi =35/50 =0.7, 
A= 0.95, 
a = (I + 0.95) / 2 = 0.975, 

z,, = 1.96 (see Table V). 

Substitutingin formula (3:2), one finds that 

Pi 0.70 + 0.04 - (1.96) /(0.0046) (0.69 - 0.13) 0.56, 
1.08 

PI, 0.69 + 0.13 = 0.82. 

(The symbol " --- " means "equals approximately.") 

Accordingly, the approximate 95 percent confidence interval for 

P 0.56 < p < 0.82. 

Substituting in formula (3:3), one finds that 

p' 0.700 - 1.96,/(0.0042) --- 0.700 - 0.127 --- 0.57, 

p" 0.700 + 0.127 --- 0.83. 

The approximate 95 percent confidence interval derived from 
(3:3) is therefore 

0.57 < p < 0.83. 

The two confidence intervals above are both based on the data 
used in the first example in Section 3.2.a. In that example the 
confidence interval was obtained by means of the chart in Figure 
1. Each of the three intervals closely approximates the correct 
interval. The end-points of the correct interval (obtained from 
Hald's tables) are as follows (to two decimal places): 

p' = 0.55 and p" = 0.82. 
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Example For the Case of a Finite Binomial Population. Suppose that 
in an origin-destination study it is reasonable to assume that a 
certain zone, say zone 1, generated 10,000 trips. Suppose further 
that in a 10 percent sample of the trips there were 200 between 
zones I and 2. Find an approximate95 percent confidence interval 
for the proportion,p, of the total (10,000) trips that are between 
zones I and 2. The information relevant to the problem can be 
summarized as follows: 

n = 1,000, 

200
fi=- = 0.2,

1,000 

N= 10,000, 

A = 0.95, 

1 +0.95 
a =
2 
 = 0.975, 

z,, = 1.96 (see Table V). 

Formulas (3:2A) and (3:3A) are nearly equal when n 1,000. 
Since (3:3A) is computationally simpler, it will be used in this 
example. Substituting in (3:3A), one finds that 

p' 0.2 - (l.96)V(0.000l6)-,/(0.90009) 0.2 - (1.96)VO.000144) 

0.2 - 0.024 = 0. 176, 

P- 0.2 + (1-96) V (0.0001 6) V (0.90009) 0.2 + 0.024 = 0.224. 

It follows that an approximate 95 percent confidence interval for 
P is 

0. 176 < p < 0.224. 

(Expressed in trips, the 95 percentconfidence intervalwould range 
from 1760 to 2240 trips.) 

Using formula (3:3) (thus assumingan infinite population),one 
obtains the following approximate 95 percent confidence limits 
for p: 

p' = 0.2 - (1.96),
/(0.00016) 0.175 

p" = 0.2 + (1.96) V(0.00016) 0.225. 
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The approximate 95 percent confidence interval forp is therefore 

0.175 < p < 0.225. 

Clearly the lengthof the above interval is only slightlygreater than 
that of the interval obtained from (3:3A). This is because n is so 
small in relation to N that the finite population factor is nearly 
equal to 1. 

3.3. 	Interval Estimation of the Parameter of a Poisson 
Distribution 

Table VI gives 95 and 99 percent confidence limits for the 
Poisson parameter for observed values (of the Poisson variable) 
from 0 to 50. (Table VI can also be used to obtain one-sided 97.5 
and 99.5 percent confidence intervals for the Poisson parameter.) 
For a wider range of observed values such confidence limits can 
be computed easily by means ofTable 11 in Molina. Approximate 
confidence limits for the Poisson parameter can be computed by 
means offormulas (3:4) and (3:5) below. 

3.3.a. Use of Table VI. Let xj, x2, . .. ' XI be a random sample 
from a Poisson distribution, and let m be the parameter of the 

I 
distribution. The sample SUM S(X) = 1xi then has a Poisson dis-

I 
tribution with parameter nm. Using the sample sum one obtains 
confidence limits for nm from Table VI; dividing those limits by 
n one then has confidence limits for m. (nm is the quantity re­
presented by M in the Note under Table VI.) 

Example. Suppose that for five one-minute counts the average 
number of vehicles (per minute) passing a point on a rural road 
is 1.4. Assuming that the observations come from a Poisson dis­
tribution, find a (two-sided) 95 percent confidence interval for the 
Poissonparameter, m. (rn is the expected (mean) numberof vehicles 
passing the point in any given minute.) In this example n = 5 and 
the sample sum, S(x), equals 5(1.4) = 7. From Table VI one finds 
that lower and upper 95 percent confidence limits for 5m are 2.8 
and 14.4, respectively. Dividing these limits by 5, one obtains 
0.56 and 2.88 as the lower and upper confidence limits for m. 
The 95 percent confidence interval for m is therefore 

0.56 < m < 2.88. 
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Table VI: Confidence Limits for the Parameter 
of the Poisson Distribution 

Observed Confidence Coefficient Confidence Coefficient

Value


Of 0.99 0.95 0.99 0.95 
Poisson 
Variable Lower Upper Lower Upper Lower Upper Lower Upper 

x Limit Limit Limit Limit x Limit Limit Limit Limit 

0 0.0 5.3 0.0 3.7 

1 0.0 7.4 0.1 5.6 26 14.7 42.2 17.0 38.0 
2 0.1 9.3 0.2 7.2 27 15.4 43.5 17.8 39.2 
3 0.3 11.0 0.6 8.8 28 16.2 44.8 18.6 40.4 
4 0.6 12.6 1.0 10.2 29 17.0 46.0 19.4 41.6 
5 1.0 14.1 1.6 11.7 30 17.7 47.2 20.2 42.8 

6 1.5 15.6 2.2 13.1 31 18.5 48.4 21.0 44.0 
7 2.0 17.1 2.8 14.4 32 19.3 49.6 21.8 45.1 
8 2.5 18.5 3.4 15.8 33 20.0 50.8 22.7 46.3 
9 3.1 20.0 4.0 17.1 34 20.8 52.1 23.5 47.5 

10 3.7 21.3 4.7 18.4 35 21.6 53.3 24.3 48.7 

11 4.3 22.6 5.4 19.7 36 22.4 54.5 25.1 49.8 
12 4.9 24.0 6.2 21.0 37 23.2 55.7 26.0 51.0 
13 5.5 25.4 6.9 22.3 38 24.0 56.9 26.8 52.2 
14 6.2 26.7 7.7 23.5 39 24.8 58.1 27.7 53.3 
15 6.8 28.1 8.4 24.8 40 25.6 59.3 28.6 54.5 

16 7.5 29.4 9.2 26.0 41 26.4 60.5 29.4 55.6 
17 8.2 30.7 9.9 27.2 42 27.2 61.7 30.3 56.8 
18 8.9 32.0 10.7 28.4 43 28.0 62.9 31.1 57.9 
19 9.6 33.3 11.5 29.6 44 28.8 64.1 32.0 59.0 
20 10.3 34.6 12.2 30.8 45 29.6 65.3 32.8 60.2 

21 11.0 35.9 13.0 32.0 46 30.4 66.5 33.6 61.3 
22 11.8 37.2 13.8 33.2 47 31.2 67.7 34.5 62.5 
23 12.5 38.4 14.6 34.4 48 32.0 68.9 35.3 63.6 
24 13.2 39.7 15.4 35.6 49 32.8 70.1 36.1 64.8 
25 14.0 41.0 16.2 36.8 50 33.6 71.3 37.0 65.9 

Note: The Poisson distribution is specified by the frequency functions(x) = 

e MMX (x =0, 1, 2, M is the mean of the distribution. For an illustra­

tion of the use of the table, suppose the observed value, x, equals 40; then 95 
percent confidence limits for the parameter, M, are 28.6 and 54.5, respectively. 
(Table VI is reproduced with the permissionof the author, W. E. Ricker, and 
the editor of theJournal of the American Statistical Association.) 

xi 
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3.3.b. Formulas. Formula (3:4) below gives approximate lower 
and upper 100A percent confidence limits for the Poisson para­
meter, m. 

m' =in + Z.2 _ Z.
(,
, + 
3 2)1 

4n n n 
(3:4) 

	2_ + Z" ?h 3
m" =in + _ _n+ 9P 

4n 

where 

n =the sample mean, 
n =sample size, 

z,, 100a percent point of the standard normal distribution, 

I + A 
a 2 

When the sample sum, n
n, exceeds 50, the confidence limits ob­
tained from (3:4) closely approximate the exact limits. When the 
sample sum is less than or equal to 50, exact confidence limits (to 
one decimal place) can be obtained from Table VI. 

Ignoring the terms Z2a / 4n and 3 / 8n 2in (3:4) one obtains the 
following simpler, but less accurate, formulasfor m' and m": 

in 
m' 
n - z,, 

(3:5) 
in 

Ml' in + z. 

For large n the difference between (3:4) and (3:5) is negligible. 
Example. Suppose that for 100 one-minute counts the average 

number of vehicles (per minute) passing a point on a rural road 
is 5.5. Find an approximate (two-sided) 99 percent confidence 
interval for the expected (mean) number, m, of vehicles in a one-
minute period, assuming that the observations form a sample of 
values of a Poisson variable. In this example, 
n = 5.5, n = 100, 
A = 0.99, a = (I + A) / 2 = 0.995 and z,, = 2.576 (see Table V). 
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Substituting in formula (3:5) one finds that 

m'=5.500 - (2.576),/(0.055) --- 5.500 - 0.603 --- 4.9, 

m" --- 5.500 + 0.603 --- 6. 1. 

The following interval is therefore an approximate 99 percent 
confidence interval for m: 

4.9 < m < 6.1. 

3.4. 	Interval Estimation of the Parameters of a Normal 
Distribution 

The normal distributionis of central importance in the field of 
statistics.* One of its many important properties is that it ap­
proximates various other distributions. This property underlies 
several formulas given in this section. For example, formula (3:2) 
is based on the normalapproximationto the binomial, and formula 
(3:4) is based on the normal approximationto the distribution of 
.,/(Y+318), where Yis a Poisson variable. 

Since it approximates other importantdistributions, the normal 
distributionis naturallyof interest in traffic engineering.A second 
(and perhapsmore important) reason for this interestis that certain 
observable quantities in traffic engineeringhave normal or nearly 
normal distributions. Two examples are "spot" speeds and reac­
tion times. The second reason indicates the utility of interval 
estimates of parameters of the normal distribution. 

There are two parameters in the normal distribution-namely, 
the mean, u, and the variance, a' (see Table III). The "center" 
of the distribution is represented by u, and the "spread" of the 
distribution is represented by the standard deviation, a (see Sec­
tion 3 of the Appendix). Confidence limits for u and c' (and cr) 
are given below. 

3.4.a. Confidence Limits for the Mean. Suppose that a random 
sample has been drawn from a normal distribution, and assume 
that the values of the mean, u, and variance, or 2 , are unknown to 
the investigator. Student's t-distribution provides a means ofobtaining 
confidence limits for u when the value of CF2 is unknown. Let u' 

*For a comprehensiveaccount ofits role in statisticssee Mood (pp. 142-143). 
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and V denote, respectively, lower and upper 100A percent con­
fidencc limits for u. The quantities u' and u' can be expressed as 
follows: 

t. S. 
U, =R- (n - 1) 

(3:6) 

t" S., 
U, =9+ V(n - 1)' 

where 
n = the sample size, 
R= the sample mean, 

S., =the sample standard deviation, 
a = (I + 1) / 2 (A =the confidence coefficient), 

t,, =the I 00a percent point ofStudent's t-distribution with n - I 
degrees offreedom (see Appendix Table 3). 

The quantitycalled degrees offreedom representsa specialconstant 
involved in Student's t-distribution (see Mood [p. 206]). 

Example. In the example in Section 2.4 the mean speed of 15 
vehicles passing a given location was 47.33 miles per hour and the 
standard deviation was 5.37 miles per hour. (It is assumed that the 
observations form a sample from a normal populationwhose mean 
and variance are unknown to the investigator.) Find a 99 percent 
confidence interval for the mean, u, of the population. In this ex­
ample n=15, R=47.33, S,,=5.37, A=0.99, a=0.995 and t.= 
2.977.* Substituting these values in (3:6) one finds that 
u'=47.33 - (2.977) (5.37) / V(14) --- 47.33 -4.28 =43.05 and 
V =47.33 + (2.977) (5.37) / V(14) --- 47.33 +4.28 =51.61. The fol­
lowing interval. is therefore a 99 percent confidence interval for u: 

43.05 < u < 51.61. 

In other words, one concludes with 99 percent confidence that the 
mean of the population of speeds lies between 43.05 and 51.61 
miles per hour. 

It should be emphasized that in the above example the value of 
a is assumed to be unknown. When the value of a can be regarded 

*The value 2.977 is the 99.5 percent point of Student's t-distribution for 14 
degrees of freedom (see Appendix Table 3). 

http:R=47.33
http:S,,=5.37
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as known, u' and u' should be calculated by means ofthe following

formula instead of (3:6): 

j 
u 

- Z'a 
X-. Tn' 

(3:7) 

U" + Z"a 
VW 

where Z" is the 100a percent point of the standard normal distri­
bution and a is, of course, the (known) standard deviation of the 
population. 

3.4.b. Confidence Limits for the Variance and Standard Devia­
tion. Suppose that a sample has been drawnfrom a normaldistribu­
tion, and assume that the values of the mean, u, and variance, a 2 

are unknownto the investigator. Let W) ' and (o,") ' be, respectively, 
lower and upper I OOA percent confidence limits for a'. These 
confidence limits can be expressed as follows: 

(o.,) 2 n S,,2 
2 

Zvi 

(3:8) 

2 n S2 

2 
XVn 

where 

n = the sample size, 
S2 = the sample variance, 

V 
2 

V 
2 

A = the confidence-coefficient,

2 = the I OOv' percent point of the Chi-square distribution with
Xv 

(n - 1) degrees of freedom, 
Xv2 the IOOv' percent point of the Chi-square distribution with 

(n - 1) degrees offreedom. 
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The Chi-square distribution has a very wide range of statistical ap­
plications. For a detailed discussion of its nature and utility see, 
for example, Duncan, Greenshields and Weida, or Mood. Percent 
points of this distributionare given in Appendix Table 2. 

It should be noted that a' and a' are, respectively, lower and 
upper confidence limits for the standard deviation, a. 

Example. Suppose that one wishes to study the variability of 
speeds at a certain roadway location in relation to speed zoning. 
Suppose further that 21 speeds have been observed there and that 
these observations can be regarded as a sample from a normal 
distribution. The mean and standard deviation of the distribution 
are unknown. Of these two parameters the only one of interest is 
the standard deviation since it is associated with variability 
("spread") of the distribution (whereas the mean is not). Assurn­
ing that the sample variance, S,,2, equals 4.87*, find a 95 percent 
confidence interval for the standard deviation, a. In this example 
n=21, S,,=4.87, 1=0.95, v'=0.975, v'=0.025; thus X2,=34.2V 
and X',=9.59. (The values 9.59 and 34.2 are, respectively, the 
2.5 and 97.5 percent points of the Chi-square distribution with 
20 degrees of freedom (see Appendix Table 2).) Substituting in 
(3:8), one finds that 

W) 2= (21) (4.87), 2.99, 
34.2 

W,) 2 = (21) (4.87) 
9.59 

10.7. 

It follows that lower and upper confidence limits for a are, respec­
tively, u'-_-,,/(2.99) --- 1.73 and a'-_--,/(10.7) --- 3.27. A 95 percent 
confidence interval for a is, therefore, in miles per hour 

1.73 <a < 3.27. 

3.5. Interval Estimation of the Mean of a Distribution 

In this section formulas are given for confidence limits on the 
mean of a distribution (i.e., the mean of a population).No special 

*The sample variance is a point estimate of U2; thus a point estimate of a in 
this example is 1/(4.87) =' 2.21 (see Section 2.4). 

http:S,,=4.87
http:X',=9.59
http:---3.27
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assumptionis made about the form ofthe distribution;for example, 
it is not assumed to be a normal distribution. 

Let it and a be the mean and standard deviation, respectively, 
of a distribution, and suppose a sample xi, X2) ... I x,, is to be 
drawn from the distribution. The expected value (mean) of the 
sample mean, R, isju. The sample mean is, therefore, an unbiassed 
point estimate of the population mean. The variance, a!,x of 9 is 
(a 2In) [N - n) I (N - 1) I or (a 2In) according as the population 
from which the sample is drawn is finite* or infinite. (Nis the size 
of the population when the populationis finite.) 

In a wide variety of practical problems it is reasonable to as­
sume that the distribution of (R -p) I a3, is approximately a 
standard normal distribution. This assumption is especially suit­
able if n is large. When this assumption is appropriate and the 
population is finite, approximate lower and upper 100A percent 
confidence limits fory are as follows: 

'U' Z. a 
'N - n),
Tn 
N - 1 

(3:9) 

Yu + Z. a 
N n
 
Tn 
 
N_- I)' 

where a = (I +A) I 2 and z,, is the I 00a percent point of the stand­
ard normal distribution. Formula (3:9) can be used when the 
investigator can regard the value of a as known. If the value of 
a cannot be regarded as known, the following formula should be 
used in place of (3:9): 

t _Ix- (N - n
 
Vn -I ANN -- I)' 

(3:10) 

R + ta (N
'In - I 
N_- 1 

where S., is the sample standard deviationand t,, is the I00a percent 

*It is assumed here that the sampling from a finite population is without 
replacement (see Section 1 of the Appendix). If, in fact, the sampling is with 
replacement, U3 =a2/n.

X 
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point of the t-distribution with (n-1) degrees of freedom* (see 
Cochran (p. 20)). 

When the population is infinite, the finite population factor, 
V[(N-n)1(N-l)],in(3:9) and(3:10)shouldbeomitted.Itshould 
be emphasized that the validity of (3:9) and (3: 10) rests on the as­
sumption of approximate normality of 9. For an interesting discus­
sion of the adequacy of this assumption see Cochran (pp. 22-28). 

When there is good reason to doubt that R is approximately 
normally distributed, one can construct conservative confidence 
limits for It. Formula (3:1 1) t below gives conservative lower and 
upper 100 (I - 1 / B') percent confidence limits for y when the 
population is finite. 

9 - B a 
(N - n), 
,-/n 
 X -- I 

(3:11) 

9 + B o' 
N - n
 
,,In 

When the population is infinite, the finite population factor, 
,/ [(N - n) / (N - 1) ], in (3:1 1) should, of course, be omitted. The 
use of (3:1 1) requires that the value of a be regarded as known; 
however, it does not require that 9 be approximately normally 
distributed. Formula (3:1 1) is valid irrespective ofthe distribution 
of R. f This means, among other things, that (3:1 1) is valid ir­
respective ofthe value of n. 

Some of the practical applications of formulas in this section 
are given in Section 5.7 which deals with short-count estimation 
of traffic volume. 

3.6. Interval Estimation of Percent Points of a Distribution 

There are various problems in traffic engineering in which es­
timates of percent points are ofinterest. For example, an engineer 

*It will be noted from Appendix Table 3 that t,,-'z,, for n
'30, say. 
f For example, ifB = 2, then the confidencecoefficient is not less than (I - 1/2 2) 

0. 75. Formula (3:1 1) is based on the Bienaym6-Tchebycheff inequality (see 
Section 3 of the Appendix). 

JProvided that a is finite. 
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might wish to estimate the median walking distance of parkers, or 
the 85 percent point of the distribution of "spot" speeds at a certain 
point on a roadway. Accordingly, this section gives formulas for 
confidence limits on percent points. 

Let X,, X21 ... I XI be a sample of n values of a random variable 
X. The only assumption made about the distribution function, 
F(x), of X is that it is continuous and increasing for each possible 
value of X. The methods of estimation used here are called non­
parametric (or distribution-free) since the functional form of the 
distributionis not assumed to be known. (Such methods were also 
used in Section 2.5.) Non-parametric methods are very simple 
computationally (although somewhat less accurate than para­
metric methods). Because of their simplicity, they are sometimes 
used even when the functional form of the distribution is known. 
These methods involve the use of order statistics X(,), x(2), . . . 

X(,,) of the sample. (For a description of order statistics see Sec­
tion 2 of the Appendix.) 

The interval (X(,), X(,)) (r<s) is a confidence interval for the 
100b percent point, xb, of F(x) with confidence coefficient* 

S-1 
C
 P (1 - b)'-' (O < b < 1), (3:12) 

where C
 is a binomial coefficient (defined in Section 4 of the 
Appendix). The expression in (3:12) is a sum of terms of the 
binomial distribution. This sum can be evaluated by means of 
tables of the cumulative binomial distribution (e.g., the tables of 
the Harvard Computation Laboratory). When n is not small, the 
sum can be approximatedby means ofthe normal approximation 
to the binomial distribution; formula (3:13) below is based on 
this approximation. For a given value ofb and a given confidence 
coefficient Z, a good choice of values of r and s is as follows: 

r = nb - z,, V[nb (I - b)], 
(3:13) 

s = nb + z,, V[nb (I - b)], 

where a= (1 +A) / 2 and z,, is the I00a percent point of the 
standard normal distribution. 

*See Mood (p. 389). 
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Example. Suppose that from a sample of 100 distances walked 
by parkers one wishes to obtain an approximate 95 percent con­
fidence interval for the median of the population of walking dis­
tances. (It should be recalled that the population median is the 
50 percent point of the distribution from which the sample is 
drawn.) In this example n = 100, b = 0.50, Z=0.95, a =0.975, and 
z. = 1.96. Substituting in (3:13) one finds that 

r = 100(1/2) - (1.96) V[100(112) (1/2)] = 50 - 9.80 --- 40, 

s = 50 + 9.80 --- 60. 

Accordingly, (x(40)
 X(60)) would be an approximate 95 percent 
confidence interval for the median, x.50. For instance, suppose 
X(40) = 0.40 miles and X(6 0) = 0.65 miles. An approximate 95 per­
cent confidenceinterval for x. . . would then be 

0.40 miles < x. 5 0 < 0. 65 miles. 

Second Example. Suppose that from a sample of200 "spot" speeds 
one wishes to obtain an approximate 95 percent confidence in­
terval for the 85 percent point, X.8., of the distribution of "spot" 
speeds. In this example n =200, b =0.85, 2 =0.95, a =0.975, and 
z. = 1.96. Substitutingin (3:13) one finds that 

r = 200(0.85) - 1.96 
,/[200(0.85) (0.15)] 160, 

s = 200(0.85) + 1.96.,,/[200(0.85) (0.15)] 180. 

It follows that (X(l 6 0), XO 8 0)) would be an approximate95 percent 
confidence interval for X. 8 5. For example, if XO 6 0) = 45 mph and 
x(I 80) = 50 mph, then an approximate 95 percent confidence in­
terval for X. 8 5 would be: 

45 mph<X. 8 5 < 50 mph. 



Chapter 4: Tests of Hypotheses 
(Significance Tests) 

A statistical hypothesis is a hypothesis (assumption) about the 
distribution ofone or more randomvariables. A test of a statistical 
hypothesis is a procedure for deciding, on the basis of a sample, 
whether to "accept" or "reject" the hypothesis. Such a test is also 
called a -significance test. The subject ofsignificance tests is a classical 
subject in statistics. 

In this chapter the essential elements of a significance test will 
be presented and several significance tests of practical importance 
in traffic engineering will be given. For a more general treatment 
of significance tests see, for example, Hoel, Mood, or Wallis and 
Roberts. 

4.1. Introduction 

Significance testing is a basic tool of the research worker in 
traffic engineering. Illustrative examples of traffic problems that 
can be dealt with by significance testing are: 

(1) After a change in its design, is the safety of a certain inter­
section the same as it was before the change? (For example, suppose 
there were 10 accidents at the intersection the year before the 
change and 9 accidents the following year. While this represents 
an apparent improvement of 10 percent, it may be inconclusive 
statistically since the change may be due to chance.) 

(2) Are travel modes of CBD shoppers the same in one city as 
in another? 

(3) Is the average speed ofvehicles at a given location the same 
on Tuesday afternoon as on Friday afternoon? 

In this section the elements and terminology of significance 
testing will first be presented. Two examples will then be given 
to show how the elements are combined to deal with questions 
like those stated above. 

The essential elements of a significance test are: 
(1) A null hypothesis-e.g., the hypothesis that a populationpara­

meter is equal to a specified value (see the examples below). 

41 
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(2) An alternative hypothesis.* 
(3) A significancelevel. 
(4) A rule for "accepting" or "rejecting" a null hypothesis on 

the basis of a sample once the sample has been drawn. (To reject a 
null hypothesis is to conclude that the hypothesis is not consistent 
with the sample; to accept a null hypothesis means simply not to 
reject it.) 

The conclusion reached in carrying out a significance test is 
subject to error. Either one of the following two types of error can 
occur: 

(1) Rejecting the null hypothesis when in fact it is true (this is 
called a "Type I" error); 

(2) Accepting a null hypothesis when in fact it is false (this is 
called a "Type 11" error).t 

Although it is desirable to minimize the probabilities of these 
errors, it is impossible to make them both arbitrarily small when 
the sample size is fixed. Usually the probability of a Type I error 
is chosen and then the probabilityof a Type 11 error is minimized. 
The significance level is equal to the probability of a Type I error 
(i.e., the probability of rejecting a true hypothesis). The value 
chosen for the significance level is naturally "small" (e.g., 0.05 
[5 percent] or 0.01 [1 percent]). As the discussion proceeds in 
this chapter, it will become increasingly clear that the traffic 
engineer must exercise good judgement in specifying and testing 
statistical hypotheses. 

Example A. Suppose that at a given intersectionin a community 
the long-run average of traffic accidents per year has been eight. 
Suppose further that the intersection is redesigned in an attempt 
to achieve greater safety, and that in the 12 months following re­
design the number of accidents is only five. The question arises 
as to whether greater safety has been achieved. Clearly there is 
the possibility that it has been; however, the fact that only five 
accidents occurred does not automatically prove that it has been. 

*Usually in practical problems there are many alternative hypotheses (see 
the examples given in this chapter). 

fThe power of a significance test relative to a specified alternative hypothesis 
is the probabilityof avoidinga Type 11 error. 



TESTS OF HYPOTHESES 43 

Since the long-run average is only eight, there may have been 
years in which there were five or even fewer accidents. In brief, 
there is a possibility that the safety of the intersection is the same 
after redesign as before. (Of course, one hopes this is not the case.) 
The null hypothesis to be considered is essentially the assumption 
that safety is the same after redesign as before. If the observed 
result is not consistent with this assumption, one feels justified in 
rejecting the assumptionand regarding the safety as greater after 
redesign. If, however, the observed result is consistent with the 
assumption, then the assumptionis accepted.* 

Let X be the number of accidents in a year and suppose X has 
a Poisson distribution (see Figure 2). The null hypothesis states that 
the true mean number of accidents is 8 for the year in question. 
The alternatives to the null hypothesis are of the form that for the 
given year the true mean number of accidents is less than 8.T The 
significance level is the probability of rejecting the null hypothesis 
when it is true (Type I error). The particular rule that should be 
used for acceptance or rejection will depend on the significance 
level chosen; for example, with a significance level that is to be as 
close as possible to 0.05 (but not to exceed 0.05) the rule would be 
to reject the null hypothesis when and only when X< 3. The set of 
possible values of X for which the null hypothesis is rejected is 
called the critical region. In the case at hand the critical region 
consists of X=0, 1, 2, and 3 (i.e., X<3). 

The elements of the significance test are indicated in Figure 2 
which gives a graph of the Poisson distribution with a true mean 
of8. Values ofx are shown on the horizontal scale and the relative 
frequenciesf(x), with which they occur are shown on the vertical 
scale [f(x)=Pr(X=x)]. The critical region is also shown in 
Figure 2. Since the Poisson distributionis discrete, the significance 

*In a sense there is an analogy between the considerations above and those 
in a court trial. The intersectionprior to redesign is analogous to the defendant. 
The point of view contained in the null hypothesis is analogous to regardingthe 
defendantas innocent until proved guilty. 

fAn example of an alternative is that the true mean number is 4, say. Note 
that the alternatives do not include the possibility that redesign has made the 
intersection more unsafe, In other words, it is presumedthat redesign at its worst 
leaves the intersection at least as safe as before redesign. 
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(See Example A-Section 4. I.) 
*These values were obtainedfrom Molina's table by roundingto threedecimal places. 
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level is not 0.05 precisely. In fact, it is Pr (X< 3) = 0.043, which 
is the sum off (0), f(l), f (2), and f(3) in the table of values of 
f(x) given in Figure 2. The critical region cannot be enlarged to 
include X= 4 since Pr (X< 4) = 0. I 00, which exceeds 0.05. 

Since the observed result, 5, does not lie in the critical region, 
the null hypothesis is accepted. More specifically, one concludes 
that the observed result is consistent (at a significance level equal 
to 0.05, approximately) with the hypothesis that the given year is 
like the past years. 

Example B. The traffic signal sequence at a certain intersection 
was modified to eliminate a left turn phase. Following this modifica­
tion it was decided to study the safety of the intersection. It was 
not clear whether the safety of the intersection would be affected, 
and so judgment on the matter was to be deferred until there had 
been a full year of experience with the new signal sequence. The 
number of accidents during the first year after the change was to 
be used as an indicationof safety. In the past, the long-run average 
number of accidents at the intersectionwas 8 per year. An impor­
tant question involved in the study was as follows:When the one-
year period has been completed (and thus a one-year total of 
accidents after the change has become known), how should the 
judgment regarding safety be made? 

This question will be answered by means of a significance test. 
The testwill be carried out on the assumption that the totalnumber 
of accidents during the first year after the change is I 5, and that 
there are no marked changes in the volumes on the twointersecting 
streets. 

As in the preceding example, it will be assumed that the number, 
X, of accidents in a year at the intersection follows a Poisson dis­
tribution (see Figure 3). The null hypothesis is that the true mean 
equals 8. The alternative hypotheses are of the form that the true 
meanis less than 8 and that the true mean is greater than 8.* With 
regard to a significance level of 0.05 (approximately) a satisfactory 

*There is the possibility that the intersection is safer than it was before the 
change. There is also the possibilitythat it is less safe. Since both possibilities are 
relevant to the problem, alternatives less than 8 and alternatives greater than 
8 are included. 
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rule here is to reject the null hypothesis when and only when 
X> 15 or X<- 2. This means of course that the critical region con­
sists of the following values of X: 0, 1, 2, and all values that are 15 
or greater. 

Figure 3 gives a graph of the Poisson distribution* having a 
mean of 8 and shows the critical region for testing the null hypo­
thesis. The test is an example of a so-called "two-tail" test since 
the critical region consists of both "tails" of the distribution. This 
is in contrast with the test carried out in the first example (see 
Figure 2) which illustrates a "one-tail" test. There the critical 
region consists of only one "tail" of the distribution (specifically, 
the lower "tail").t 

To construct the critical region one finds the largest lower "tail 
region" whose probability content is not more than 0.05/2 and 
the largest "upper tail" region whose probability content is not 
more than 0.05/2. The complete critical region consists of both 
these tail regions, and the exact significance level is the sum of 
their probabilitycontents. The lowertail selected has a probability 
content of 0.014 (instead of 0.05/2=0.025) and the upper tail 
selected has a probability content of 0.016 (see the table of values 
off(x) in Figure 2). Accordingly, the significance level is 0.014+ 
0.016=0.03. If the distribution were continuous, one would have 
been able to select each "tail" so that its probability content was 
exactly 0.025. The significance level would then be 0.025 + 0.025 

0.05. 
Since the observed result, 15, lies in the critical region, one 

rejects the null hypothesis of no change in safety (at a significance 
level equal to 0.03). In other words, the evidence suggests that 
the revised signal sequence may have affected the safety of the 
intersection. 

4.2. Significance Tests Based on Confidence Intervals 

In certain situationsconfidenceintervals can be used to carry out 

*The same distribution is also graphed in Figure 2. 
f A "two-tail" or "one-tail" test is used according as the set of alternativeslies 

on both sides or only one side ofthe value (namely 8) in the null hypothesis.The 
set of alternatives lying on both sides of 8 is called "two-sided." The set lying 
on only one side is called "one-sided." 

http:0.016=0.03
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a testofsignificance (seeWilks [p. 217]). Thiswill now be illustrated. 
Example. With regard to the second example given in Section 

3.3 suppose there is a hypothesis that the true mean m = 5.0, and 
assume that this is to be tested at a I percent (0.01) significance 
level. The alternative hypotheses are of the form that m<5 and 
that m > 5. The number in the sample is 100, and 5.5 is the average 
of the 100 observations. 99 percent confidence limits for m are 4.9 
and 6.1, respectively. Since m=5 lies within the 99 percent con­
fidence interval (i.e., between the limits) one concludes that the null 
hypothesis is consistent with the data at the 0.01 significance level. 
(Had the interval not included the value given in the null hypo­
thesis, the null hypothesis would have been re ected at the 0.01 
significance level.) 

As indicated in the example above, the set of alternative hypo­
theses is "two-sided." If the set had been "one-sided," a "one-
sided" confidence interval would have been used to make the test. 
For example, if the alternatives were of the form m<5, then an 
upper 99 percent confidence limit would be used. The null hypo­
thesis would be accepted or rejected at the 0.01 level according as 
the upper limit exceeds 5 or does not exceed 5. 

4.3. Contingency Tables 

It is sometimesdesired to test whether two binomialpopulations 
are the same. The following questions are examples of those that 
can be dealt with by this kind of test: With regard to reaction to 
lighting, do drivers going in one direction on a freeway differ from 
those going in the opposite direction? Do shoppers in one com­
munity differ from those in another with regard to use of bus 
transportationand non-bus transportation?In a given community 
are two outdoor advertising posters better than one for getting a 
certain advertisingmessage across to the public? 

The data obtainedfor testingwhether two binomial populations 
are the same can be arranged conveniently in the form of a so-
called 2 x 2 contingency table (see Table VII). A simple generaliza­
tion of the 2 x 2 table can be used when more than two binomial 
populations are involved and when two or more multinomial 
populations are involved (see Section 4.3.d). 
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4.3.a. Two by Two Contingency Table. A 2 x 2 contingency 
table is shown in Table VII in abstract form. The table consists 
of two rows and two columns (apart from totals). 

Table VII: 2 x 2 Contingency Table 

Number Having Number Not Having 
Attribute A Attribute A Totals 

Sample I a C a+c=m 

Sample 2 b d b+d=g 

Totals r=a+b s=c+d N 

It is assumed that Sample 1 has been drawn from a binomial 
population and that Sample 2 has been drawn from a binomial 
population. The quantities m and g are the sizes of Samples I and 
2, respectively. The quantity a represents the number of members 
of Sample I having Attribute A, and the quantity c represents the 
number of members of Sample 1 not having Attribute A. The 
meaning of "Attribute A" depends ofcourse on whateverbinomial 
populations are under study. (For example, in the shopper survey 
consideredin Section 4.3.b. Travel by Bus represents Attribute A.) 
Nis the grand total over both samples. r is the total number having 
Attribute A and s is the total number not having Attribute A-
these totals being taken over both samples. The quantities r, s, m 
and g are called marginal totals.* 

4.3.b. Testing Equality of Proportions Against "Two-Sided" 

Alternatives. Let p , and p, be the respective probabilities of At­
tributeA in the populationsfrom which Samples 1 and 2 have been 
drawn (see Table VII). The null hypothesis to be testedis thatp, = 

P2- The alternative hypotheses of interest are all those for which 

pl*p,. The set of alternatives is "two-sided" since it includes 

cases where p, is less than p2 and cases where P, is greater than P2. 

*In the 2 x 2 tables considered in this book the marginal totals m and g are 
regarded as fixed (in advance ofsampling). In the statistical literature on 2 x 2 
tables other situations are also treated. For example, in some problems all four 
marginal totals are regarded as fixed; in other problems, none are fixed. In 
these cases the statistical methods used are computationally similar to those 
given herein. 
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(A "one-sided" set of alternatives is considered in Section 4.3.c. 
below.) 

The followingquantity can be used in testing the null hypothesis: 

mr) 2 _ g
 2 

(a- iv (b _)2 (C - (d - 2+ 	 	 + 7) + = say,W 2, (4: 1) 
mr gr MIS 9S 

W , N T N 

(r, s, > 0) *. When the null hypothesis is true, W2 in (4: 1) has a 
Chi-square distribution(approximately) with 1degreeoffreedom.t 
This distribution is given in Appendix Table 2. At a significance 
level a, say, the null hypothesis is to be rejected when and only 
when w' exceeds the 100 (I - a) percent point of the Chi-square 
distribution. 

It can be shown that w' in (4: 1) can be expressed in the follow­
ing simple form: 

W2 = N (ad- bc)' (4:2) 

(mgrs) 

Example. In a pilot study of drivers' reactions to lighting, 133 
persons westbound on a certain segment of highway were inter­
viewed as to their reaction to two types of lights (mercury vapor 
and fluorescent). II 7 stated that they noticed a difference of lights 
whereas 16 stated that they didn't notice a difference. For 90 
eastbound drivers, the corresponding numbers were 87 and 3. 
Are these results consistent with the assumption that the popula­
tion of eastbound drivers and the population of westbound drivers 
are alike with regard to detection of a difference? (Are the two 

*When r or s equals 0, W2 is defined to be 0. m and g are sample sizes and are 
thus both greater than 0. 

tThe accuracy of the approximation depends on m, g, and the binomial 
parameter. The accuracy is good when neither m norg is small and the binomial 
parameter is not close to 0; these requirements are often met in traffic engineer­
ing studies. For further discussion ofthe approximation, including the so-called 

correctionfor continuity," see Duncan (pp. 506-507). 



TESTS OF HYPOTHESES 5I 

samples from the same binomial population?) The set of alter­
natives to the null hypothesis consists of all cases in which the two 
populationproportions are unequal. 

The data can be presented in a 2 x 2 contingency table as 
follows: 

Difference No Difference 
Noticed Noticed Totals 

Eastbound 87 3 90 
Westbound 117 16 133 

Totals 204 19 223 

From formula (4:2) one finds that 

W2 = (223) [(87) (16) - (117) (3) ] 2 5.2. 
(90) (133) (204) (19) 

Under the null hypothesis the quantity W2 has a Chi-square 
distribution (approximately) with I degree of freedom. In the 
above example the value obtained for w' exceeds the critical value, 
3.84, ofthe Chi-square distribution at the 0.03 level of significance 
(see Appendix Table 2). Hence it is concluded at the 0.05 level 
that the data are not consistentwith the assumption that eastbound 
and westbound populations are alike. 

The finding of this pilot study that eastbound and westbound 
groups are significantly different leads one to ask, "Why should 
theybe different?" It wouldappear that there are unknown factors 
associated with drivers' reactions to lighting. A study of such 
factors would appear warranted. (An interesting by-product of 
this pilot study is the finding that the majority of motorists in 
both directions of travel noticed differences between the two kinds 
of illumination.) 

Second Example. Table VIII gives data obtained in a sampling 
study of travel modes ofshoppers entering central business district 
department stores in Pawtucket and Woonsocket, Rhode Island 
(during a typical January 1956 day). 
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Are the two towns alike with regard to proportions of shoppers 
traveling by bus? 

Table VIII: Travel Modes of CBD Store Customers-

Pawtucket and Woonsocket, Rhode Island*


(Typical January 1956 Day) 

Town Travel By Bus Non-bus Travel Totals 

No. % No. % No. % 

Pawtucket 538 38 877 62 1415 59 

Woonsocket 168 17 821 83 989 41 

Totals 706 29 1698 71 240,
 100 

The null hypothesis here is that the two towns have the same 
population proportions traveling by bus. The alternatives are all 
cases in which the two population proportions are unequal. The 
null hypothesis can be tested by means ofw'. Using formula (4:2) 
one finds that 

2 (2404) [(538) (821)-(877) (168)]2 
W (706)(1698)(1415)(989) 124. 

The 99 percent point of the Chi-square distribution with one 
degree offreedom is 6.63, approximately. Accordingly, the critical 
region for rejecting the null hypothesis at the 0.01 significance 
level consists of all values Of W2 >_ 6.63. Since the observed value 
of w' exceeds 6.63, the null hypothesis is rejected at the 0.01 
significance level. As a matter of fact, the null hypothesis would 
have been rejected even if the significance level had been con­
siderably smaller than 0.01. 

The statistical analysis given above indicates that the large ap­
parent difference between the two towns is not a chance difference. 
One could easily believe that there are important differences 
between them with regard to one or more of such factors as car 
ownership, quality of bus service, availability of parking, density 
of population, etc. 

4.3.c. Testing Equality of Proportions Against "One-Sided" 
Alternatives. In the examples above, the alternative hypotheses 
were all cases ofthe formp,*P2 where p, andP2 are the respective 

*Source: Wilbur Smith and Associates. 
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probabilities ofAttribute A in the twopopulations (see Table VII). 

Situations arise in which all alternatives ofinterest are "one-sided" 

-for example, that p,, say, is less thanP2. To test the null hypo­

thesis (that p I =P2) against "one-sided" alternatives, one can use: 

a b 

In 9 
= W, say, (r, s, > 0) (4:3) 

M gI 
S) (I + 1A 
(see Table VII). The quantity, W, above is the difference between 

the sample proportions divided by the estimate of the standard 

deviation of their difference. Under the null hypothesis W is ap­

proximately a standard normal variable (for sufficiently large m 

and g). To test the null hypothesis against alternatives of the form 

PI <P21 one would reject when and only when the observed value 

of w' has a sufficientlylarge negative value. 

It should be remarked that W)' equals the quantity w' given 

in (4: 1) and (4:2) ; thus w' is also suitable for carrying out the test 

required in the examples in Section 4.3.b. (The null hypothesis 

would be rejected when the observed value of w' has a sufficiently 

large positive value and when it has a sufficiently large negative 

value.) 

Example. Suppose that in an outdoor advertising study in a 

certain town it is desired to compare the effectiveness of a single 

poster with the effectiveness of a pair of widely separated posters. 

After a prominent poster has been displayed for a month, a sample 

of 200 residents is obtained of whom 160 recognize a photograph 

of the poster. Suppose that subsequently two prominent, identical 

posters are displayed-onein the same place as the original poster 

and the other in a different part of town. After the two posters 

have been displayed for a month, a sample of 250 residents is 

obtained of whom 225 recognize a photograph of the poster. Are 

these results consistent with the hypothesis that two posters are no 

better than one? The set of alternatives consists of all cases for 

which p I <P 2, where p, represents the population proportion o f 

*When r or s equals 0, w' is defined to be 0. m and g are sample sizes and are 
thus both greater than 0. 
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residents who would recognize the poster in a single location and 
p, represents the population proportion of residents who would 
recognize the poster that is in two locations. 

To test the null hypothesis one can use formula (4:3): 

160 225 
0-0 5-0

W -3.0. 

385
 65 

4_50) 
4_50) 250 

GO-10 + I )] 

Since the observed value 3.0) is less than the 5 percent point 
(- 1.645) of the standard normal distribution, the null hypothesis 
is rejected at the 0.05 level ofsignificance.* In other words, it would 
appear that the pair of identical posters is better than one. 

4.3.d. The h x k Contingency Table. The 2 x 2 contingencytable 
in Section 4.3.a. is a special case of an "h x V contingency table 
given in abstract form in Table IX. With regard to the h x k table 
the following assumptions are generalizations of the assumptions 
in Section 4.3.a. For each i (i = 1, . . ., h) there is a multinomial 
population involving k categories. The probability that an in­
dividual drawn at random from the ith population belongs to 
category j will be denoted by _pij (i = 1, h; j = 1, k). The 
null hypothesis is that for everyj: 

P1i=P2i=... =Phi (j = 1, k). (4:4) 

The set of alternative hypotheses consists of all cases in which two 
or more of the populations are not the same. 

A test of the null hypothesis can be carried out by means of the 
quantity W' defined as follows: 

nij - ni. n.j 2 2 

W2 N n-j 1 (4:5)
ni. n.j n..J 

N 

When h= k = 2, W2 in (4:5) equals w' in (4:1). When the null 
hypothesis is true, W2 has a Chi-square distribution approximately 

*For a "two-tail" test (at the 0.05 level) the null hypothesis would be rejected 
if w'< - 1.96 or w'> 1.96. Since the observed w' equals - 3.0, the null hypo­
thesis would also have been rejected if a "two-tail" test had been carried out. 



TESTS OF HYPOTHESES 55 

with (h - 1) (k - 1) degrees of freedom. A sufficiently large value 
of W' leads to rejection ofthe null hypothesis. (For further discus­
sion of contingencytables see Duncan, Hoel, or Mood.) 

Table IX: hxk Contingency Table 

Categories 

Samples 1 2 . . . j . . . k Totals 

1 nI n12 . . . nij . . . n1k n,. 

2 n2, n22 . . . n2i . . . n2k n2' 

n,, ni2 nij . . . nik ni. 

h n,1 n.2 . . . nj . . . nhk nh-

Totals n. , n.2 . . . n. i I . . n.k N 

(Note: nij is the number of members of the ith sample that fall in 
categoryj). 

4.4. Significance Tests Regarding Population Means 

The testing ofhypotheses regarding population means is treated 
at length in the statistical literature. Some special cases of such 

hypotheses are discussed below in relation to traffic studies. 

4.4.a. Testing Whether a Population Mean Has a Given Value. 

Situations often arise in which there is a null hypothesis that a pop­

ulation mean has a given value. For example, in the case ofa bino­

mial population, suppose there is a hypothesis that the probability, 

p, ofHeads in tossing a certain coin equals 1/2. (Note that P is the 

true mean relative frequency of Heads in the population.) After 

observing a number of tosses of the coin one could test the hypo­

thesis. The test could be carried out against "two-sided" alter­

natives by setting up a confidenceinterval forp and notingwhether 

the value of 1/2 lies in the interval (see Sections 3.1 and 4.2). The 

hypothesis is accepted or rejected according as 1/2 lies inside or 

outside the confidence interval. 



56 ELEMENTARY SAMPLING 

With respect to the Poisson distribution, suppose there is a null 
hypothesis that the mean, say nz, equals a given value mo. The 
example in Section 4.2 shows, in detail, how to test the null hypo­
thesis by means of a confidence interval; in this example nz0= 5. 

Confidence intervals can also be used to test whether the mean 
of a normal population equals a specified value. For example, 
when the value of a is unknown, formula (3:6) could be used. To 
test the null hypothesis against, say "two-sided" alternatives, one 
accepts or rejects the hypothesis according as the specified value 
does or does not lie within the confidence interval. 

When the appropriate conditionshold, one can use a confidence 
interval of the type described in Section 3.5 to test the hypothesis 
that a population mean has a specified value. 

4.4.b. Testing Whether the Means of Two Normal Populations 
are Equal. Tests ofwhether the means oftwo binomialpopulations 
are equal aredescribed in Sections 4.3.b. and 4.3.c. A test ofwhether 
the means of two normal populations are equal will now be con­
sidered. It will be assumed that the variances of the two populations 
are equal.* 

Let x1, . . . I xnl and yl, Yn2 be two samples from normal 
populations having means ul and U2, respectively, and a common 
variance, U2 (whose value is unknown). Let the null hypothesis be 
that U I = U 2, and suppose that the alternatives ofinterest are that 
U1 <U2 and that U1 > U2- When the null hypothesis is true, the fol­
lowing quantity has Student's t-distributiont with n , + n2 - 2 de­
grees of freedom: 


 n, n2 

Nn, -+n2) = t, say, (4:6) 
n, S2.+n2 S y 2 

nl+n2-2 

*From a theoretical standpoint this assumption is important. When the ratio 
of the variances is unknown, the problem is referred to as the Behrens-Fisher 
problem, which has been a controversial topic in the field of statistics. (For 
further discussionof the problem see Cram6r (pp. 520-523) or Mood (pp. 264­
265)). For practical purposes the Aspin-Welch test can be used when the ratio 
of variances is unknown (see Duncan (pp. 476-478)). 

Appendix Table 3 is a table of Student's distribution. 
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where S'Xand S'y are the sample variances. The null hypothesis is 
rejected when t has a sufficiently large positive value and when it 
has a sufficientlylarge negative value. 

Example. A spot speed study was made of a given location on a 
Tuesday and Friday of a typical week. The purpose was to obtain 
information as to whether Tuesday and Friday mean speeds were 
the same. A sample of 16 speeds obtained on Tuesday had a mean 
of 42.0 (mph) and a variance of 30.1. A sample of 26 speeds ob­
tained on Friday had a mean of50.1 (mph) and a variance of28.7. 
All observations were made during off-peak periods, and the 
weather was clear on both days. It is assumed that the samples 
come from normal populations with the same variance.* Test the 
hypothesis that the population means are equal at, say, the 0.05 
level of significance. 

From Appendix Table 3 one finds that for 40t degrees of free­
dom the 97.5 percent point of the t-distribution is 2.021; thus the 
null hypothesis will be accepted or rejected dependingon whether 
t in (4:6) does or does not satisfy the following inequalityt: 

- 2.021 < t < 2.02 1. 

Substituting the numerical values of the sample means and vari­
ances in (4:6) one finds that 

/((16) (26)
 
(-8.1) 42 

481.6 + 746.2 

A 40 

(8. 1) V (9.90) 4.6. 
V(30.7) 

Since the value of t does not lie in the interval - 2.02 1 < t < 2.02 1, 
the null hypothesis is rejected at the 0.05 level ofsignificance. 

*A test for equality of the variances is carried out in the first example in 
Section 4.5. The hypothesis of equality is accepted there at the 0.05 level of 
significance. 

tNote that n, +n2 -2 = 16 +26 -2 =40. 
JThe frequency function of t is symmetrical about 0; thus the amount of 

probability below -2.021 and above +2.021 equals .025 +.025 =.05, which is 
the required significance level. 
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Since the mean speeds are significantly different, the question 
arises as to what might account for the difference. Presumably 
additional field investigation would be required to settle this 
question. 

If it were desired to determine whether curb parkingregulations 
affect mean peak hour speeds, the procedure would be generally 
the same. Spot speed studies would be conducted before and after 
implementationof the regulations, and a significance test for the 
difference between the two means would be carried out. (See 
Section 5.5.) 

Second Example. The data given below regarding reaction times 
were obtained for vehicles on Orange Street, New Haven, Con­
necticut.* It is desired to test whether the population means are 
equal (at an 0.05 level of significance). The populations are as­
sumed to be normal with the same variance.1 

Northbound Southbound 

R= 1.68 seconds = 1. 86 seconds 
S.,,= 1.45 seconds Sx = 1. 75 seconds 
n, =28 n2=29 

R-Y= 1.68-1.86= -0.18 

nj +n2 -2=28 +29-2=55. 

Substituting in formula (4:6) one finds that 

(0.18) (28) (29) 

t A 57 -0.41. 
28(l.45) 2+ 29(l.75) 2 

A 55 ) 

The 97.5 percent point of the t-distribution for 55 degrees of free­
dom is approximately 2.0 (see Appendix Table 3). Since the 
observed value of t lies between - 2.0 and 2.0, the null hypothesis 
is accepted at the 0.05 level. (Another way of stating this conclu­

*See Greenshields, Ericksen, and Schapiro. 
tAs indicated in the second example in Section 4.5, a test for equality of the 

variances resulted in acceptance of the hypothesis of equality (at the .05 level). 
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sion is to say that the difference between the two means is not 

significant at the 0.05 level.) 

4.5. A Test for Equality of Variances (The F-test) 

The question of whether the variances oftwo normalpopulations 

are equal is of interest in various traffic engineering problems. 

Illustrations of such problems are indicated by the two examples 

given at the end of this section. Speed zoning provides another 

example; the zoning may havelittle or no effect on the mean speed, 

but it may influence the "spread" of the distribution of speeds.* 

For example, when minimum and maximum speed limits are put 

into effect on freeways, the engineer may wish to ascertain whether 

there is a change in the speed "spread." 

The hypothesis that the variances of two normal populations 

are equal can be tested by means of the sample variances. Let n, 

and n2 be the sizes of the samples and let S' and S' be the respective 

sample variances. Let F denote the ratio x y 

n I S
2, 

n,-l (4:7) 

S2 
n2 y 

n2 - 1 

When the null hypothesis is true, this ratio has the F-distribution 

with n, - I and n2 - I degrees of freedom. A more detailed discus­

sion ofthis well-known distributionis given in Hoel. 
Let U2 and u' be the true variances of which S2 and S2 are1
 y X y 

point estimates, respectively. To test the null hypothesis against 
all alternatives of the form a 2 < a 2 and g2>U2 one rejects the 

i y X Y)
null hypothesis when F is sufficiently large and when it is suf­

ficiently small. In making use of tables of the F distribution one 

forms the ratio in (4:7) so that the observed F is not less than 1. 

The null hypothesis is then to be rejected at the significance level 

a when and only when F exceeds the I 00 (I - a/2) percent point 

of the F-distribution. 

*The "spread" is indicated by the standard deviation, which is simply the 
square root of the variance. 
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Example. With regard to the first example in Section 4.4 test for 
equality of variances (at the 0.05 level of significance). It is given 
that 

n1=16; S'=30.1; n2=26; S2X y = 28.7. 

Forming the F-ratio so that F> 1, one obtains 

16(30.1) 
F -- 15 1.08. 

26 (28.7) 

_5 

For 15 and 25 degrees of freedom one finds from a table of F that 
2.41 is the 97.5 percent point of the F-distribution.* Since the 
observed value, 1.08, is less than 2.41, one accepts the null hypo­
thesis at the 0.05 level of significance. 

Second Example. With regard to the second example in Section 
4.4 test for equality of variances (at the 0.05 level). (S,, = 1.45, 
n, = 28; S, = 1.75, n2 = 29.) Forming the F-ratio so that F> 1, one 
finds that the ratio equals 1.45 approximately. For 28 and 27 

degrees of freedom the 97.5 percent point of the F-distribution is 

2.15. Since 1.45 is less than 2.15, one accepts the hypothesis of 

equal variances (at the 0.05 level). 

*The statistical literature contains many tables of the F-distribution. An 
extensive table of it is given in Hald's Statistical Tables and Formulas. He refers 
to it as the v2 distribution. 



Chapter 5: Case Studies and Applications 

Applications of sampling concepts and methods have been il­
lustrated in Chapters 1, 2, 3, and 4 by means of brief examples 
pertainingto traffic engineering.The purposeof the present chapter 
is to give additional and more detailed traffic applications. The 
following topics are considered: (1) Sample Size and Survey De­
sign, (2) Techniques ofSampling, (3) Absolute and Relative Error 
in Estimating The Binomial Parameter (for example, in estimating 
the proportion oflocal cars in traffic), (4) DeterminingSample Size 
for Estimating The Mean ofa Population, (5) "Before-and-After" 
Studies, (6) Randomness of Traffic, and (7) Estimation of Traffic 
Volume by Means of Short Counts. 

5.1. Sample Size and Survey Design 

A survey based on sampling (instead of complete enumeration) 
is called a sample survey.* This type of survey is used frequently in 
traffic engineering studies. Proper design and execution of such a 
survey call for a thorough knowledge of both sampling and the 
subject matter involved in the survey. 

An important factor in the design of a sample survey is the size 
of the sample involved. Fortunately, this factor is often under the 
control of the investigator. In advance of sampling, information 
about the population is incomplete. (In fact, if it were complete, 
there would be no point in drawing a sample.) As the sample size 
increases, information about the population becomes less incom­
plete. Unfortunately, however, there is usually an increase in sam­
pling cost as the sample size increases. In practice there is a need to 
achieve a balance between the cost and incompleteness ofthe informa­
tion obtained in sampling. The balance depends on the resources 
and requirementsof the investigator. 

Further general remarks are given below regarding the relations 

*The principal steps of a sample survey are described by Cochran (pp. 2-4).
tSpecific aspects of this relation are given in other parts of this book (e.g., see 

Table 1and Sections 5.3, 5.4, and 5.7). 

6 



62 ELEMENTARY SAMPLING 

between sample size and the amountofinformation in the sample. 
The relation between cost and size ofa sample is beyond the scope 
of this book since it depends on the particular circumstances in 
which a sample survey is carried out. 

5.1.a. Effect of Sample Size on Estimation. Almost all point es­
timators have the property that the "spread" (in some sense) ofthe 
estimator's distribution tends to 0 as the sample size becomes in­
definitely large. An illustration of this property is provided by the 
distribution of the mean of a sample from an infinite population. 
The sample mean, say R, is a point estimator of the population 
mean. The "spread" of the distribution of R can be regarded as 
the standard deviation, ai, of R*; and a,,= a-,In, where n is the 
sample size and a is the population standard deviation. It is clear 
that a-Xtends to 0 as n becomes indefinitelylarge. 

In general the average length of a confidence interval (for a 
parameter of a distribution) depends on the sample size. As the 
sample size becomes indefinitely large, the average length of the 
interval tends to 0. Various formulas in Chapter 3 indicate how 
confidence limits depend on sample size (e.g., see (3:3), (3:5), 
and (3:6)); similarly, Figure I (Chapter 3) provides a clear, com­
prehensive idea ofthis dependence with regard to confidence limits 
for the binomial parameter. 

5.1.b. Sample "Percent." In many traffic engineering studies a 
quantity called "percent" is associated with the sample drawn. 
A "20 percent" sample, say, is one that contains 20 percent of the 
population involved. A "5 percent" sample is one that contains 
5 percent of the population. This quantity has the appearance of 
being an index of the adequacy of the sample. Actually, however, 
the appearance is deceptive since the quantity is not sufficient by 
itselffor that purpose. The variance of a sample mean can be used 
to show why this is so. (Usually, the smaller this variance is, the 
more adequate the sample is for estimating the populationmean.) 
The formula for this variance is (u'ln) (N- n) / (N- 1), where 
C' is the populationvariance, Nis the size of the (finite) population, 
and n is the sample size. The formula can also be written as (a'/n) 
(1 - r) (N) / (N - 1), where r = n1N. (The sample "percent" equals 

*u.j is also called the standard error of the mean. 
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100r.) For fixed N the variance decreases as r increases; however, 
for comparing samples from populations of different sizes r is not 
satisfactory by itself. A 20 percent sample from a population of 
size 1,000 would have a larger variance than a 5 percent sample 
froma populationofsize 100,000 (whena'is the same in bothcases). 
It should be noted also that when the sampling is from an infinite 
population, the sample "percent" is irrelevant to the adequacy of 
the sample. In this case N= oo; thus the sample "percent" equals 
0 irrespective of the sample size. 

5.1.c. Finite Population Adjustment of Sample Size. In design­
ing a sample surveyone may wish to choose the sample size so that 
the variance,a, ofthe sample meansatisfies somerequirement. For 
example, the requirement might be that a' be a certain fraction 
of the population variance, a'. As previously indicated, u' =U'ln 
when the population is infinite; from this simple formula one can 
easily compute the required value, say n', ofn. When the sampling 
is without replacement from a finite population (with the same 
variance a2), the required sample size, say n", is smaller than n'.* 
The relation between n" and n' is as follows: 

11 nj ni n = 
n'-l ni (5:1) 

1+_
F I+j
 

where Nis the size of the finite population. The quantity n'- n" 
can be looked upon as an increase (in the required sample size) 
that results from regarding a population as infinite when it is 
actually finite. Formula (5:1) has of course been obtained by 
solving the equation 

a 2 = (7 2 
N-n`
 

ni n, (5:2) 

for n". 

5.2. Techniques of Sampling 

A sampling procedure that is based on probability theory is 
referred to asprobabiliy sampling (see Cochran, pp. 6-7). In practice 
the principal types of probability sampling are: 

*The reason is that a2 Xequals (Or2/n) (N-n) / (N- 1) insteadof(a2ln). 
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1. random sampling, 
2. cluster sampling, 
3. stratified sampling. 

Combinationsof these types are used frequently. Covault, for ex­
ample, has carried out an interesting comparison ofthese probabil­
ity sampling procedures with regard to estimationofhighwayneeds. 

In this book most ofthe sampling considered is randomsampling. 
Systematic sampling (a special case of cluster sampling) and strati­
fied sampling are discussed in Section 5.7 which deals with short-
count estimation. The books by Cochran, Deming, McCarthy, 
and Sukhatme will be of interest to those wishing to read further 
about sampling theory and methods. 

The sampling techniques described in this section are suitable 
for sampling from synthetic as well as actual populations. Sampling 
from a synthetic population is of interest in traffic engineering in 
connection with simulation-e.g., the simulation of traffic flow 
characteristics. A further matter of interest regarding these sam­
pling techniques is that they can be "computerized" easily. This is 
important since the use of high-speed, electronic computers will 
often greatly increase the value ofa simulationstudy. 

Detailed procedures of drawing a random sample are given 
below. The procedures are based on the use of random digits, 
which will now be described. 

5.2.a. Random Digits and Random Selection. A random digit is 
an observed value of a random variable, X, having the following 
frequency function: 

Pr (X=i) = 1/10 (i=O, 1'.. ., 9). (5:3) 

(For a definition of thefrequengfunction of a random variable see 
Section 3 ofthe Appendix.) A table of random digits is simply a set 
of random digits selected independently; Appendix Table 4 is an 
example of such a table. Two random digits can be regarded as 
forming a number from 00 to 99 selected purely at random. Three 
random digits can be regarded as a numberfrom 000 to 999 selected 
purely at random. A similar statement holds for any number of 
random digits. For example, the number 4926 formed by the first 
four digits in the first row ofAppendix Table 4 can be regarded as 
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a number selected purely at random from the 10,000 numbers 
ranging from 0000 to 9999. A number formed in this way is called 
a random number. 

5.2.a.l. Random Selection of an Elementfrom a Finite Population. By 
means of random digits one can easily select an element at random 
from a finite population. First, the elements are numbered from 0 to 
N-1, where N is the total number of elements in the population. 
One then picks a random number and selects the element that has 
this number. If the random number exceeds N-1, it is discarded 
and another one is picked. The example below illustrates random 
selection of an element from a population in which the total 
number of elements is twelve. 

Example. Select a five-minute short-count period at random 
from the twelve five-minute short count periods in an hour. (The 
need for such a selection could arise in making the "random start" 
used in the systematicsampling procedure described in 5.7.c.) Let 
the twelve periods be numbered 00, 0 1, 02, .. ., IO, 11, where 00 
is associated with the first period, 01 with the second period, etc. 
Since the largest of the twelve numbers consists of two digits, a 
two-digit random numberwill be used. To pick a two-digit random 
number use the first pair ofdigits in, say, the fifth row ofAppendix 
Table 4. Turning to the table, one finds that the random number is 
41. Since this number exceeds the largest of the twelve numbers, 
it must be discarded. To pick another random number use the 
second pair of digits (in the fifth row). This number is 01; thus 
the period selected is the one associated with the number 01­
namely the second period. In other words, the five-minute short-
count period selected at random is the one extending from five 
minutes to ten minutes after the beginning of the hour. 

5.2.a.2. Random Selection of a Value of a Random Variable. The ran­
dom selection of a value of a randomvariable can be carried out by 
means of random digits. A detailed procedure for making such 
a selection is described below. 

Let X1, X,, ., X, be random digits, and let 

X, + X2 +... + Xh = T, say. (5:4)
10 102 101, 
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Since each random digit XI, . . . , X. is one of the numbers 0, 1, 
... 1 9, the possible values of T lie between 0 and 1. It can be 
shown that the distribution of T is approximatelya uniform distribu­
tion (described at the end ofSection 4 ofthe Appendix). 

To illustrate the way in which T is formed, let h be 5, say, and 
let XI, X21 X31 X4, X5 be the last group offive digits in, say, the 
first row of Appendix Table 4. Turning to Appendix Table 4 one 
finds that X, = 1, X2 = 2, X3 = 5, X4 = 7, and X, = 4. It follows that 
T then equals 1/10+2/ 102 +5/ 103 + 7/ 104 +4/101 which equals 
0. 12574. The number 0. 12574 can be regarded as a value selected 
at random from a distribution that is approximately uniform. The 
quantity I / I O' is a bound on the difference between the cumulative 
distributionfunction of T and the cumulative uniform distribution. 
For example, when h equals 5 the error of the approximation is 
not more than 1/100,000. The approximation is improved by re­
placing T by T', where T'=.Y+5110'+'. The bound is then re­
duced to 5/10". 

Let X be a random variable and represent the cumulative 
distribution function of X by F(x). Let z' be a value selected at 
random from a uniform distribution, and let x' be the least value 

of x such that F(x) > z'. (5:5) 

The number x' is a randomly selected value of X. When F(x) is 

a continuous and increasing function, x' is simply the value of x 

satisfying the equation F(x) = z'. (5:6) 

It will be evident from the discussion below that formulas (5:5) 

and (5:6) are very useful. An illustration of the use of (5:6) will 

now be given for the special case in which X has a standard normal 

distribution. 

Example. Select a value at random from the standard normal 

distribution. This will be done in two steps. The first step is to 

select a value, z', at random from the uniform distribution. The 

second step is to solve (5:6) for x', where F(x) is the cumulative 

standard normal distribution. Choosing h=3, say, select a value 

of Z' by means of the first three digits in, say, the second row of 

Appendix Table 4. These digits are 3, 3, 8, respectively; thus z'== 

0.338. Since F(x) is the cumulative standard normal distribution, 
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Appendix Table I can be used to solve (5:6). SettingF(x) equal to 
0.338,onefindsfromTableIthatx'equals -0.42approximately.* 
The number - 0.42 can be regarded as a value selected at random 
from the standard normal distribution. The final result is ap­
proximate (rather than exact) for two reasons. One is that in the 
first step the distribution used is an approximation to the uniform 
distribution. The second reason is that the solution of (5:6) is 
approximate. The error in the first step can be reduced by simply 
usinga largervalue ofh. The error in the second step can be reduced 
by using a table that gives x to a larger number of decimal places. 

A value ofthe standard normal distribution can also be selected 
at random by means of a table of random normal numbers (see 
5.2.b.2. below). 

5.2.b. Drawing a Random Sample. A random sample of values 
ofa random variable X can be regarded as observedvalues ofX that 
have been obtainedindependently.Accordingly, to draw a random 
sample ofvalues ofX one can simply carry out independent repeti­
tions of the random selection of a value of X. In Sections 5.2.b. I. 
and 5.2.b.2. the drawing of a random sample is described with 
regard to three different distributions of X-namely the binomial, 
Poisson, and normal distributions. 

When a sample is drawn from a finite population without re­
filacement, it is called a randomsample if the procedure is such that 
all possible samples have the same chance of being selected. This 
type of sampling is described in Section 5.2.b.3. 

It should be noted that the sample elements are not obtained 
independently in random sampling without replacement from a 
finite population. This type of sampling is therefore not precisely 
the same as random sampling in which the elements are obtained 
independently. This latter type of sampling can be regarded as 
an extension ofrandom samplingwithout replacement.The exten­
sion involves a process in which the size of a finite population in­
creases without limit. 

5.2.b. 1. Sampling From Binomial and Poisson Populations. Let X have 
a binomial distribution with parameter p. This means that 

*Since 0.338 is less than 0.5, one uses the fact thatF(-x) =I -F(x) in solving 
the equation. (I-0.338=0.662; thus -x'.- 0.42 and x'=' -0.42.) 
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Pr (X = 1) =p and Pr (X= 0) = I -p, where the values I and 0 of 
X mean "success" and "failure," respectively. To select a value 
ofX at random, choose an h-digit number, say w', from Appendix 
Table 4 and then assign the value 0 or I to X according as (w'l IO') 
is less than I -p or not less than I -p. The procedure is exact ifh 
is chosen to be equal to the numberof decimal places to which p is 
expressed.The procedureis based almost entirelyon theuse of(5:5). 

Example. Select values at random from a binomial population 
in whichthe probability,p, ofa "success" is 0. 70. Sincep is expressed 
to two decimal places, choose h = 2. Choosing the first two digits of, 
say, the third rowofAppendix Table 4, one finds that W= 23. Since 
W110' (=0.23) is less than I -p (=0.30), one assigns the value 
0 to X as the outcome of this random selection. A second random 
selection of a value of X can be made by means of the next two 
digits in the third row of Appendix Table 4. The numberformed by 
these two digits is 31. Since 31 / I O' (= 0.3 1) is not less than 0.30, one 
assigns the value I to X as the outcome ofthe second random selec­
tion. For a third random selection one can use the third set oftwo 
digits in the same row. The number formed by those two digits is 
87, thus one assigns the value I to X as the outcome of the third 
random selection. It should be noted that a random sample of 
three values of X has been obtained. The elements of the sample 
are 0, 1, and 1; thus the sample consists of one "failure" and two 
C(successes." 

Second Example. Suppose that it is desired to simulate the occur­
rence (and non-occurrence) of left-turning vehicles on one ap­
proach to a given intersection. Suppose further that from a general 
knowledge of traffic on this approach, one can assume that the 
probability an arriving vehicle turns left is 0.12. To determine 
whether a given (simulated) vehicle turns left, one can use a two-
digit random number. The vehicle is regarded as one that turns 
left or does not do so according as the random number is greater 
than (or equal to) 0.88 or is less than 0.88. (Note that 1-0.12= 
0.88.) Starting with, say, the 15th row of Appendix Table 4 one 
obtains the results tabulated below for the first 20 (simulated) 
vehicles. (In the table, L means "turns left" and T means "does 
not turn left.") 
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Vehicle 1 2 3 4 5 6 7 8 9 10 
Random Number 92 47 01 88 40 76 01 19 3 1 09 
Action ofVehicle L T T L T T T T T T 

Vehicle I 1 12 13 14 15 16 17 18 19 20 
Random Number 14 34 45 56 14 50 28 41 58 65 
Action of Vehicle T T T T T T T T T T 

Random selection ofa value from a Poisson populationwill now 
be considered. The procedure, which is based mainly on formula 
(5:5), will be described by rneans ofan example. It could be used, 
for instance, in simulating the arrival of cars at a drive-in bank 
or at a garage. 

Example. Select values at random from a Poisson distribution 
having a mean of 8. Let X be the random variable having this 
distribution, and let f(x) be the frequency function of X. This 
frequency function and the cumulative distribution function, say 
F(x), are tabulated below. (f(x) is also given in Figure 2 (to three 
decimal places).) 

X Ax) F(x) 
0 0.000 0.000 
1 0.003 0.003 
2 0.011 0.014 
3 0.029 0.043 
4 0.057 0.100 
5 0.092 0.192 
6 0.122 0.314 
7 0.140 0.454 
8 0.140 0,594 
9 0.124 0.718 

10 0.099 0.817 
1 1 0.072 0.889 
12 0.048 0.937 
13 0.030 0.967 
14 0.017 0.984 
15 0.009 0.993 
16 0.004 0.997 
1 7 0.002 0.999 
18 0.001 1.000 
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SinceF(x) is expressed to three decimalplaces, a three-digitrandom 
number from Appendix Table 4 can be used to randomly select a 
value of X. Let s represent a three-digit number selected from 
Appendix Table 4, and let s' be s110' (=sllOOO). The possible 
values of s' are 0.000, 0.001, . . ., 0.999. If s' turns out to be less 
than 0.003, the value I is assigned to X; if s' is less than 0.014 but 
not less than 0.003, the value 2 is assigned to X; etc. The complete 
correspondence between values of X and ranges of values of s' is, 
tabulated below. 

Range of values of s' Value ofX


O<s'<0.003 1

0.003 <s'<0.014 2

0.014<s'<0.043 3

0.043 <s'<0.100 4

0.100<s'<0.192 5

0.192<s'<0.314 6

0.314<s'<0.454 7

0.454 < s'<0. 594 8

0.594<s'<0.718 9

0.718<s'<0.817 10

0.817:!
s'<0.889 I I

0.889<s'<0.937 12

0.937<s'<0.967 13

0.967:!9s'<0.984 14

0.984<s'<0.993 15

0.993 < s'<0.997 16

0.997:s-s'<0.999 17


S' = 0.999 18


It should be noted that the endpoints of the ranges of values of s' 
are values ofF(x). The results of the procedure involved are exact 
for the distribution,F(x), tabled above. 

The actual selection of values of X will now be illustrated. Let 
s be the first three digits in, say, the fourth row of Appendix Table 
4. Turning to this table, one finds that these digits are 5, 7, 5; thus 
s = 575 and s'=0.575. Since 0.575 lies in the range 0.454 <s'<0.594, 
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one assigns the value 8 to X. Using the next three digits in the 
fourth row, one can select a second value of X at random. These 
three digits are 1, 7, 5; thus s= 175 and s'= 0. 1 75. Since 0. 1 75 
lies in the range 0. 100 < s'<0. 192, one assigns the value 5 to X. 
Continuing in this way, one can select additional values of X at 
random. For example, the values of s' associated with the third, 
fourth, and fifth sets of three digits in that row are 0.525, 0.650, 
and 0.281, respectively. The corresponding values of X are 8, 9, 
and 6, respectively. A random sample offive values ofX has now 
been obtained. The elements of the sample (in the order in which 
they were drawn) are: 8, 5, 8, 9, and 6. 

The binomial and Poisson distributionsare examples of distribu­
tions associated with discrete random variables. The procedure 
for randomly selecting a value of any given discrete random vari­
able is similar to the procedures described above. 

5.2.b.2. SamplingFrom aNormalPopulation. To select a value at ran­
dom from a standard normal distribution, one can use a table of 
random normal numbers. An example of such a table is given in 
A Million Random Digits (by The Rand Corporation). To obtain 
a random sample of n values from the distribution, one simply 
reads out n entries from the table. The values that make up such 
a table are obtained in much the same manner as that described 
in the example in 5.2-a.2. 

The mean and variance of the standard normal distribution are 
0 and 1, respectively.A randomlyselected value from this distribu­
tion can be transformed easily to a randomly selected value from 
a normal distribution with mean u and variance a'. Let x' be a 
randomly selected value from the standard normal. The quantity 
a x'+u=y', say, is then a randomlyselected value from the normal 
distribution whose mean and variance are u and a'. For example, 
suppose one wishes to obtain a value at random from a normal 
distribution whose mean and variance are 7 and 25, respectively. 
Using -0.42 as the value of x' (see the example in 5.2.a.2.), one 
can regard 4.90 as a randomly selected value from the distribution. 
(Note thaty'=a x'+u = 5 (- 0.42) + 7 = - 2.10 + 7 = 4.90.) 

5.2.b.3. Sampling Without Replacement From a Finite Population. A 
table ofrandom numbers can be used to draw without replacement 
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a random sample ofsize n (n > 1) * from a finite populationofsize N. 
The procedure is to number the N objects in the population from 
0 to N- 1 and then pick random numbers until n are obtained. 
The actual sample consists of the objects whose numbers were 
drawn. In selecting randomnumbers discard any that have already 
been selected and discard any that exceed N- 1. 

Example. From the 95 residences in a certain survey area draw 
a random sample of size 20 without replacement. (The need for 
such a sample might arise in making an origin-destination study.) 
Set up a convenient numbering of the residences from 00 to 94. 
Turning to Appendix Table 4, proceed along, say the sixth row, 
using pairs of digits to select members of the sample. One finds 
that the first 20 pairs of digits are as follows: 

73, 88, 98, 02, 36, 99, 53, 12, 30, 53, 

71, 23, 74, 88, 61, 59, 04, 67, 62, 83. 

This set of 20 numbers is not entirely satisfactory since there are 
two 88's, two 53's and two numbers (namely 98 and 99) that exceed 
the maximum number (94) among the population elements. The 
second 88, the second 53, and the 98 and 99 are discarded. Con­
tinuing along the sixth row' one finds that the next number (60) 
is acceptable. The next number (53) is not. The next number (81) 
is acceptable. The next number (97) is not. The next number (32) 
is acceptable. Having used all digits in the sixth row, one starts 
in another row-say the seventh. The first two-digit number there 
is 93, which is acceptable. This completes the random sampling 
procedure. The sample consists of the population elements whose 
numbers are as follows: 

73, 88, 02, 36, 53, 12, 30, 71, 23, 74, 

61, 59, 04, 67, 62, 83, 60, 81, 32, 93. 

5.3. 	Absolute and Relative Error in Estimating the Binomial 
Parameter 

5.3.a. Introduction. Certain populations commonly encountered 
in traffic engineering may be regarded as "binomial" in that each 

*The special case in which n = 1is treated in 5.2.a. 1. 
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element either has or does not have a given attribute. Illustrative 
examples are: Through versus local traffic; carversus bus travel; traffic 
having origins in a given zone versus traffic from all other zones; 
parking spaces occupied versus parking spaces not occupied in a given 
facility. 

This section discusses the relation between sample size and ac­
curacy of estimation of the parameter of a binomial population. 
The results given are applied to a wide variety of traffic problems. 
Specifically, the three main objectives of this section are to show 
how to determine: 

(1) the size of a sample so that the absolute or relative error of 
the point estimate (of the binomial parameter) is not more than 
a given amount with preassigned probability; 

(2) an upper bound (in advance of sampling) on the relative 
error associated with a given sample size for a preassigned prob­
ability; 

(3) "relative error" confidence limits for the binomial param­
eter. 

5.3.b. Formulas for Sample Size. Let p be the probability that 
an element drawn at randomfrom the populationhas a given attri­
bute. The probability that an element drawn at random does not 
have the given attribute is I -p = q, say. For a sample of size n 
from the population, the point estimate, say fi, ofP is 

fi (number having attribute) 
n 

(see Section 2.2). The point estimate, say q', of q is q'= 1 
5.3.b.i. Absolute Error. It is often desirable to determine the 

sample size so that there is a high probability that the absolute error 
offi is not more than a preassignedamount, sayD. (More precisely, 
one wishes to determine the sample size so that Pr { - D <fi-p < D} 
= 2, where Ais a preassigned (high) probability (e.g., 0.95)). Let 
no be the required sample size. It can be shown that 

n o --- ( ffz,.2-,) P ( I - P) , (5:7) 
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where a = (1 + A) /2 and z. is the I 00a percent point of the standard 
normal distribution.This result is based on the normal approxima­
tion to the distribution offi.* When p = 0.5, the quantityp(I -fi) 
in (5:7) assumes its maximumvalue, which is 0.25. This means that 

no < D 2 (0.25). (5:8) 
( Z2_ ) 

When there is no information aboutp in advance ofsampling, the 
sample size should be chosen equal to the quantity on the right 
in (5:8). It is very helpful, ofcourse, to have informationregarding 
.p (in advance of sampling) that makes it reasonable to assume 
p(I -p) does not exceed a given number less than 0.25. 

Example (Travel Modes). It is desired to estimatethe proportion 
of shoppers entering a downtown department store that travel by 
bus to the central business district. The sample size should be 
sufficiently large so that the absolute error of the observed pro­
portion fi will not exceed 0.05 with a probability of 0.95. In this 
problem A=0.95, a=0.975, Za=1.96, and D=0.05. Substituting 
in (5:8), one finds that no<[(1.96)2/(0.05 ) 2] (0.25)=384. The 
sample size should be 384 if there is no information available (in 

advance of sampling) regarding the true proportion,p. 

If previous studies had shown thatp would not exceed 0.2, a 

smaller sample size would be acceptable. In this case p(l -p) 

would not exceed (0.2) (0-.8)=0.16 and no would not exceed 

[(1.96)2 /(0.05)2] (0. 16) --- 246. A sample ofsize 246 would at least 

meet the requirement stated above. 

5.3.b.2. Relative Error. In many engineering studies considera­

tion is given to relative rather than absolute error as a basis for 

selecting appropriatesample sizes. It is often desirable to determine 

the sample size so that there is a high probability that the relative 

error of fi is not more than a preassigned amount. (More precisely, 

one wishes to determine the sample size so that Pr { - d < (
 -p) lp 

< dj = T, where y is a preassigned high probability (e.g., 0.95) 

and d is a preassigned bound on relative error (e.g., 0. IO).) The 

type ofproblem under consideration is illustrated by the following 

*When the population is a finite binomial population, no can be reduced in 
accordance with formula (5: 1). 

http:Za=1.96
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question: How many vehicles should be counted on a given street 
to estimate with a high probability the proportion of in-state 
vehicles within a relative error of, say, 1 0 percent? 

Let n, be the required sample size. It can be shown that 

2 
ni 
(Xiq I-P (5:9) 

p ' 
, isthelOOypereentpointof 

wherep is the true proportion and X', Y 
the Chi-square distribution with 1 degree of freedom (tabled in 
Appendix Table 2).* Formula (5:9) is based on the normal ap­
proximation to the distribution offi. Since (I -. p) lp becomes in­
definitely large as p tends to 0, it is apparent that formula (5:9) 
cannotbe used when there is no in'formationregardingpin advance 
of sampling. Accordingly, it will be assumed that there is a known 
lower bound, say p', on p in advance of sampling. Since p >p', it 
is apparent that n, < (X 2, y1d (1-p')Ip'. This bound on n, will 

be regarded as the appropriate sample size. In summary, the ap­
propriatesample size, say n, is 

n = (2 2") I (5:10)
d P, 

wherep' is a known lower bound on p, d is a specifiedbound on the 
relative error of fi, and X2,I Y is the 100y percent point of the Chi-

square distributionwith 1 degree of freedom.t Ifp=p', the prob­
ability is y (approximately) that in a sample of size n the relative 
error of fi is not more than d. If p exceeds p', the required sample 
size would be less than n; however, the investigator would not 
know how much less. Accordingly, p' should be chosen as large 
as possible in keeping with the investigator's knowledge of the 
subject matter.++ 

*X2 Z2, where z,, is the 100a percent point of the standard normal dis­a 

tribution and a= (1 + Y) / 2. 
tWhen the population is a finite binomial population, n can be reduced in 

accordance with formula (5: 1). 
+Since y is chosen to be less than 1, there is in general a non-zero probability 
f 1 - y) that fi<p' (1 - d). 
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When p' in (5: 10) is a lower bound on both p and q, n is an ap­
propriate sample size for which both the relative errors offi and q' 
are not more than d (with probability y) ­

With certain modificationsformula (5: 10) also gives a conserva­
tive value of the sample size when the sampling is from a multino­
mial distribution.* In this case P' denotes a lower bound on pl, 
P,, . . ., Pr, where K is the number of categories and PI, P21 - - -, 
Pr are the respective probabilities associated with the categories. 

2
xi ,y is then replaced by XK - 1, Y, the I00 y percent point of the Chi-
square distribution with (K- 1) degrees of freedom. For illustra­
tion, consider a trinomial population consisting of trucks, buses, 
and passenger cars in a given traffic flow. The modified form of 
formula (5: 10) would give a sample size more than adequate for 
simultaneously estimating all three proportions within a specified 
relative error, d.t 

Example (Traffic Composition). How large a sample should be 
selected from a binomial population, consisting of passenger cars 
and commercial vehicles on a given highway, so that there is a 
probability of 0.99 that the estimatesfi and q' are both within 10 
percent of p and q, respectively? (On basis of previous experience 
it is reasonable to assume that both p and q are at least 0. 15.) In 
this problem p' = 0. 15, d = 0. 1, y = 0. 99, and X', y = 6.63 (see Ap­
pendix Table 2). Substituting in (5:10), one finds that the ap­
propriate sample size is as follows: 

n = 6.63 -) 0.85 = 
((0.1) 2 0.15 

663 17) = 
( L3 

3757. 

If the probability required in the above example was 0.95 instead 
of 0.99, the quantity X2,0.9,=3.84 would replace X2,0.99=6.63. 
The appropriatesample size would then be 

n = 	[ 3.84 0.85 384 
17) = 2176. 

-(_0.11)_
) 
15 
_
3 

*For a description of the multinomial distribution see Section 4 of the Ap­
pendix. 

tThe requirement of simultaneous accuracy is more stringent than that of 
accuracy in only one category. For this reason a larger sample is needed for 
simultaneous accuracy than for accuracy in only one category. 

http:X2,0.99=6.63
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5.3.c. Graphic Solution for Sample Size, Relative Error, and 
Confidence Limits. For any given level of probability a family of 

curves may be drawn on the basis of (5: 10). Such a familyofcurves 

is given in Figure 4 for a 0.95 level ofprobability. Each curve is a 

graph ofthe appropriate sample size, n, as a function ofthe relative-

error bound, d, for a given value ofp'. 

Three important ways of using Figure 4 are described below 

and are summarized in Table X. 

(1) Selecting Sample Size. Figure 4 can be used to determine the 

sample size, n, so that the relative error offi will be within a specified 

amount, d, with a probability of 0.95. It is assumed that there is 

a known lower bound, p', on the true proportion, p. When p' is a 

lower bound on p and q, the relative errors ofboth fi and q' are not 

greater than d (with 0.95 probability). 

(2) Determining an Upper Bound (or Limit) on Relative Error. For a 

given sample size and a given value ofp' Figure 4 can be used to 

determine a bound, d, on the relative error offi with a probability 

of 0.95. (This is simply a reverse of the first use.) 

(3) Determining "Relative Error" Confidence Limits. When a sample 

ofsize n has been drawn (and the value offi has been determined), 

Figure4 can be used to obtain"relativeerror" 95 percentconfidence 

limits (approximately) for the true proportion, p. (In this use p' 

is replaced by fi andprobabiliy is replaced by confidence.) The limits 

are expressed in terms of relative error offi. (It is assumed that in 

advance of sampling there is no informationregardingp.) 

The third use of Figure 4 gives results that are approximately 

the same as those obtained from confidence interval charts (see 

Figure 1). The "relative error" confidence limits are of the form 

fi± dfi; thus the "relative error" confidence interval is of the form 

fi - dfi <p <fi + dfi. 

The approximationis generally adequate for most traffic engineer­

ing situations; however, if n is less than 100 or d exceeds 0.30 (30 

percent), the approximation is not necessarily close. When ac­

curate confidence limits are required, they can be obtained from 

Figure I or from formulas in Section 3.2.b. 
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Example of Selecting Sample Size (Traffic Composition). With re­
gard to the example given in Section 5.3.b.2, find the appropriate 
sample size by means of Figure 4. As previously indicatedp'-_ 
0.153 d=0.1, and y=0.95. The solution is obtained as follows: 

(1) The line labelled p'= 0. 15 is read to where it intersects the 
(vertical) line corresponding to d=0. I 0 (I 0 percent) ; 

(2) The appropriatesample size is then read (horizontally) from 
the vertical scale. In the case at hand, n --- 2200. 

Table X: Uses of Figure 4 

Type of Use Technical Description 

Selecting Sample Size Determining n when d and p' are given in 
advance of sampling (y = 0.95) 

Determiningan Upper Bound Determining d when p' and n are given in 
on Relative Error advance ofsampling (y = 0.95) 
Determining "Relative Error" Determining d after the sample has been 
Confidence Limits obtained (and n and are known) (y 

0.95) 

Example of Determining An Upper Bound on Relative Error (CBD 
versus Through Traffic). It is desired to determine an upper bound 
(with 0.95 probability) on the relative error of the estimate of 
through (non-CBD) traffic on a given street. The estimate is to be ob­
tained by interviewing a sample of the drivers. Field conditions 
limit the number of interviews to 900. Past studies indicate that 
the true proportion of through traffic is at least 0.3. The solution is 
obtained as follows: 

(1) The line labelledp'= 0.30 is read to where it intersects the 
(horizontal) line correspondingto n= 900; 

(2) The upper bound (limit), d, on relative error is then read 
(vertically) from the horizontal scale. In the case at hand d--- 0. IO. 

Example oj'Detemining "Relative Error" Confidence Limits (Traffic 
Origins). Suppose that of 2,000 cars observed on the Merritt 
Parkway in Milford, Connecticut, 400 cars had New York State 
license plates. Regarding the 2,000 cars as a sample from a binomial 
population, find 95 percent confidence limits for the proportion, 

p, ofNew York State cars in the population. The confidence limits 

can be found as follows by means of Figure 4: 
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(1) Since fi = 400/2000 = 0.2, read the line fi = 0.2 to where it 
intersects the horizontal line corresponding to n = 2000; 

(2) The bound on the relative error is then read (vertically) 
from the horizontal scale; in this case d --- 0.09 (=9 percent), thus 
the relative error of fi is at most 9 percent with a confidence co­
efficient of 0.95; 

(3) The95percent"relativeerror"confidencelimitsarefi±dfi, 
which are (approximately) 0.20-0.02=0.18 and 0.20+0.02= 
0.22; thus the 95 percent confidence interval for p is 

0. 18 <p < 0.22. 

(The confidence limits obtained above are in close agreement with 
those obtained from (3:2) or (3:3).) 

5.4. 	Determining Sample Size for Estimating the Mean of a 
Population 

Frequently it is desired to determine the sample size such that 
with a given probabilitythe sample mean* differs from the popula­
tion mean by not more than a certain amount-expressed as a 
given fractionofthe population standard deviation. In other words, 
it is desired to determine the sample size so that 

Pr [ - ra <:
 - [t < ru] = Z, (5:11) 

where A is the given probability (e.g., 0.95), [t is the population 
mean, :
 is the sample mean, a is the populationstandard deviation, 
and r is a given fraction (e.g., 0.1, 0.25, etc.). Let no be the re­
quired value ofthe sample size. It can be shown that 

n Z 2a 	 (5:12)
r2) 

where a I + 
) /2 and z. is the I 00a percent point of the standard 
normal distribution. This solution of the problem is based on the 
approximate normality of the distribution of the sample mean; 

*The sample mean is an unbiassed estimator of the population mean (see Sec­
tion 3.5). 
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the result is exact (to the nearest integer) if the population is 
normal. If the population is finite (ofsize N, say), the quantity no 
should be replaced by the quantityn', saywhere n' =nol(l +noIN)

0 0 
(see formula (5:1)). 

Example. It is desired to estimate the average speed along a given 
section of highway within one mile per hour with a probabilityof 
0.95. (On the basis of previous studies of speeds on the highway it 
can be assumed that the standard deviation of speeds is 10 miles 
per hour.) In this problem A= 0.95, a = 0.975, z,, = 1.96, a = 10 and 
r = I/ IO. Substituting in (5:12), one finds that 

(1.96)2 . 
no _- _ 384; 

- (0.1) 2 ­

thus the required sample size is 384.* In practice about 400 speed 
measurements would be obtained along the given section ofhigh­
way. 

It is apparent from formula (5: II) that the requirement about 
the sample size pertains to the absolute error ofZ With probability 
A the maximum absolute error is ra, where a is the population 
standard deviation and r is a fraction chosen by the investigator.t 

Formula (5:12) can be used to determine the required sample 
size when the available information regarding a makes it reason­
able to assume that o- is known (as in the preceding example). 
Formula (5:12) is also useful even when there is limited information 
about a (e.g., knowledge of only an upper bound). 

When the numerical value of ra is important but there is no 
useful information available regarding a, the required sample size 
cannot be determined from (5:12). One way of dealing with such 
a situation is to draw a preliminary sample to obtain useful in­
formation regarding a. 

*If the population is regarded as finite, the required sample size can be 
reduced. For example, ifthe population is regarded as the traffic on a given day 
and this traffic amounts to 10,000 vehicles, the required sample size is n1o 
no / (I +nOIN) =384/1.0384 --- 370. 

f If the maximum absolute error, ra, is expressed as G, say, then formula 
(5:12) can be written as follows: n. -- z2a a2lG2. 
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5.5. "Before-and-After" Studies 

"Before-and-after" studies in traffic engineering are commonly 
undertaken to obtain information about the effect of a certain 
change in roadwayor traffic conditions (e.g., to estimatethe benefit 
ofa specific improvement). The effect is usually expressedin terms 
of some measurable quantity such as traffic volume, travel time, 
or operating speed. For example, one might wish to obtain infor­
mation on the effect of one-way routings on average speed or 
volume. 

A statistical model of "before-and-after" studies is given below. 
This model is followed by an example illustrating the use of sta­
tistical methods in analyzing data obtained from a "before-and­
after" study. 

5.5.a. Statistical Model of a "Before-and-After" Study. A "be­
fore-and-after" study can be regarded as a comparison ofone group 
of observations with another, where one group is obtained before 
and the other group after a specified change.* Ideally one wants all 
factors relevant to the study to be the same after the change as 
before-with the exception, ofcourse, ofthe factor(s) in which the 
change is made. When the study is designed in this way, the effect 
of the specified change is not obscured by other effects. 

From a statistical point of view it is natural to regard the group 
of "before" observations as a random sample from a "before" 
population, and the group of "after" observations as a random 
sample from an "after" population. By means ofthese samples one 
can estimate a difference between the populations or carry out a 
significance test regarding the populations. For example, one might 
form a point or interval estimate of the difference between the 
population means-such estimates are given in Section 5.5.b. 
below. Alternatively, one might test whether the population 
means are equal-several tests of this type are given in Chapter 
4. Both Examples A and B in Section 4.1 deal with the question 
of whether the mean of a Poisson population is the same after 
a change as before; somewhat similar questions, associated with 
binomial populations, are treated in Section 4.3; a test of whether 

*See Wardrop (pp. 348-351). 
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the means of two normal populations are equal is given in Section 
4.4.b. 

The use ofestimation and significance testing in a "before-and­
after" study will now be illustrated in a numerical example. 

5.5.b. Am Illustrative Example. Suppose the data tabulated be­
low were obtained in a study of the effect, on average speed, of 
eliminating peak-hour curb parking. 

jt,,* 	 Conditions 

Before Elimination After Elimination 
of Peak-hour Curb of Peak-hour Curb 

Parking Parking 

(1) Date 	 June 6, 1961 June 20, 1961 
(2) Period of Day 	 4:30-5:30 p.m. 4:30-5:30 p.m. 
(3) 	 Sample Mean (Average Speed) 

(rnph) 22.0 25.0 
(4) Sample Standard Deviation (mph) 6.5 4.0 
(5) 	 Sample Size (Number of speeds 

observed) 50 40 

*Items (1), (2), and (3) are commonly recorded but items (4) and (5) are 
often not recorded. It will be shown that (4) and (5) are also important for 
analysis of the data. 

On basis of these data what conclusions can be drawn regarding 
the effect (if any) of eliminating peak-hour curb parking? (Can 
the 3 mph difference between the average speeds be regarded as 
merely a chance difference? What limits can be placed reasonably 
on the amount oferror associated with the 3 mph difference?) 

It is assumed that the "before" observations form a sample from 
a normalpopulation with mean UB and variance a',B say. Similarly, 
it is assumed that the "after" observations form a sample from a 
normal population with mean uA and variance a', say. The 
quantity that is primarily of interest is the difference between the 
true mean speeds-namelyUA-UB' 

Let H = uA - UB' A point estimate, H, of H is H = XA - XB1 
where 9A and 9B are, respectively, the means of the "after" and 
"before" samples. fl is normally distributed with mean H and 
variance a'1nA+aB1nB, where nA and n,3 are, respectively, theA 
sizes of the "after" and "before" samples. Let H' and H" be lower 
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and upper 100A percent confidence limits for H, respectively. 
H' and H" can be expressed as follows: 

H'=fl-z. al + aB 
AnA 

(5:13) 

H'=fl+z. 	(CA2 +$'2 


nA nB 

where z,, is the 100a percent point of the standard normal distribu­
tion and a = (I + A) /2. 

Since 9A = 25.0 mph and 9B = 22.0 mph., the point estimate of 
the difference between mean speeds NA UB) is 

fl= 25.0 mph - 22.0 mph 3.0 mph. 
This estimate is of course subject to error. To indicate the amount 
by which it may be in error, confidence limits for uA -U. will be 
obtained. 

If the values ofaA and a,, could be regardedas known, confidence 
limits for uA - UB could be obtaineddirectlyfrom (5:13). In practice 
the values are often unknown, and so in this discussion they are 
assumed to be unknown. Under these circumstances one can still 
use (5:13) by replacing the population variances, a'A and a,B by 
the respectivesample variances, say SA2 and SB, which are estimates 
of u' and u'. The resultin confidence limits are inexact; however,A B 9 

they are suitable for practical purposes when both sample sizes 
are large (2:30, say). (In the example above both sample sizes 
can be regarded as large.) 

To obtain (inexact) 95 percent confidence limits for H (=u, ­
U,) in the example above, one sets z,, = 1.96 and replaces u'A and 
a' in (5:13) by S,', = (6.5)' and SA' = (4.0)', respectively. The re-
suiting confidence limits are as follows: 

H'=3.0 - (1.96) 50 40 

3.0 - (1.96) 
,/ (1.245) -_ 3.0 - 2.19 = 0. 8 1, 

H"--- 3.0 + 2.19 = 5.19. 

1
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Accordingly, the (inexact) 95 percent confidence interval for 

UA - UB is 

0.81 mph < u, - uB < 5.19 mph. 

In other words, one concludes (with roughly 0.95 confidence) that 
the increase in average speed after elimination of peak-hour curb 
parking is more than 0.81 mph but less than 5.19 mph. 

The 95 percent confidence interval obtained above immediately 
provides a test of the hypothesis that u, = u, at an 0. 05 significance 
level. When u, = u,, the difference uA - u, = 0. Since 0 is not in­
cluded in the 95 percent confidence interval for UA - U11 the hy­
pothesis that uA = u, (i.e., that uA - u,, = 0) is rejected at the 0.05 
significance level. (The use of a confidence interval to carry out 
a significance test is discussedin Section 4.2.) 

It is not necessary to compute a confidence interval for UA - UB 

to carry out a significance test of the hypothesis that uA = UB. The 
test carried out above by means of a confidence interval can also 
be carried out directly by means ofthe following ratio: 

gA - RB 

S'2 S'2 

The hypothesis is accepted or rejected at significance level oe ac­
cording as the absolute value of the ratio is or is not less than the 
100(l - a/2) percent point of the standard normal distribution. 
(This direct test and the test based on a confidence interval are 
equivalent when a = I - A.) Substituting the data of the example 
in the ratio, one finds that the ratio equals 3IV 1. 245 
_ 2.69. Since 
this value exceeds 1.96 (the 97.5 percent point of the standard 
normal distribution), the hypothesis of equality of means is re­
jected at the 0.05 significance level. (This conclusion is of course 
the same as thatreached in the test based on a 95 percentconfidence 
interval.) 

For a detailed discussion of confidence limits and significance 
tests pertaining to the difference of means of two normal popula­
tions see Duncan (pp. 469-481). It is apparentfrom that discussion 
that the confidence limits used in the example above can be im­
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proved by certain modifications. Use of the modified limits does 
not require thatthe samplesizesbe large. It should also be remarked 
thatwhen a 2 and a2 can be assumed equal (even thoughunknown), 
exact confidence limits can be obtained for uA - UB through the use 
of Student's t-distribution.* A further matter of interest is that 
with certain refinements the significance test used in the example 
above becomes the Aspin-Welch test (referred to in Section 4.4.b). 

5.5.c. Concluding Remarks. The illustrativeexamplegivenabove 
shows clearly that analysis of data from "before-and-after" studies 
requires information about not only sample means but also sample 
sizes and sample variances. If there were no informationabout the 
sample sizes and variances, it would not have been possible to 
draw statistical conclusions about the difference between mean 
speeds. 

It should be remarked that a "before-and-after" study does not 
necessarily involve two samples. For instance, each of Examples A 
and B in Section 4.1 involves only one sample. In each case the 
characteristics of the "before" population were assumed to be 
completely known. It is also of interest that more than just two 
populations can be compared statistically (e.g., see the h x k con­
tingency table in Section 4.3.d). 

Finally, it should be noted that "before" and "after" represent 
only one kind of difference between two populations (namely a 
difference with regard to time). There are countless other ways 
in which two populations can be distinct (e.g., geographical loca­
tion, type of vehicle, direction of travel, etc.) 

5.6. Randomness of Traffic 

Occasionally the traffic engineer wishes to determine whether 
traffic counts at a particular location are what would be expected 
from a Poisson distribution. This problem can be dealt with by 
means of the Poisson index oJ'disfiersion, which will be described 
below. For other ways of handling problems of this type see 
Greenshields and Weida (pp. 163 ff.). 

Let x, . . ., x,, be the numbers ofvehicles passing a given road­

*Section 4.4.b gives an exact significance test of the hypothesis that uA = UB 

under the assumption that U2A and U2B are equal. 
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way point in each of n equal time intervals, respectively. It is as­
sumed that each xi (i = 1, . . ., n) is drawn from a Poisson distribu­
tion. The null hypothesis* is that all n of the x's come from the 
same Poisson distribution. To test the null hypothesis one can use 
the Poisson index of dispersion, which can be written as follows: 

n 

n (xi-R)2 i
 x2i nx, (5:14) 
x x 

(see Hoel, p. 178). When the null hypothesis is true, this quantity 
has a Chi-square distribution (approximately) with n -I degrees 
of freedom. The null hypothesis is rejected at significance level a 
when the Poisson index exceeds the I00 (I -a) percent point of 
the Chi-square distribution with n - I degrees offreedom. 

Example. Suppose that the following counts were made in suc­
cessive 5-minute periods: 20, 18, 25, 22, 16, 24, 17, 23, 21, 15, 18, 
23. It is desired to test, at an 0.05 level of significance, the null 
hypothesis that all observations have come from the same Poisson 
distribution. In this example n = 12, R= (242/12), nR = 242, and 
n 

Y, x
 5002. Substituting these values in (5:14), one finds that 

n (Xi_R)2 5002 - 242 248.03 - 242 = 6.03. 
=1 R 42/12 

Since n=12, the Chi-square distribution associated with (5:14) 
has 12 -I= II degrees of freedom. The 95 percent point of the 
Chi-square distribution with 11 degrees of freedom is 19.7 (see 
Appendix Table 2). Since the observed value ofthe Poisson index 
is smaller than 19.7, the null hypothesis is accepted at the 0.05 
level of significance. (For a general description of significance 
testing see Chapter 4.) 

5.7. Estimation of Traffic Volume by Means of Short Counts 

Traffic volume is of interest in almost every traffic study. In 
some casesthe volume mustbe determinedprecisely, and this means 
in general that all the traffic involved must be counted. Often, 

*See Chapter 4 for descriptions and illustrations ofnull hypotheses. 
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however, a statistical estimate of volume will be satisfactory since 
pin-point accuracy is not necessary. When extreme accuracy is 
not required, estimation is much more practical than precise deter­
mination since the costs (in money and effort) are much less. 

This section deals with the subject of traffic-volume estimation 
by means ofa sample ofshort counts. Short-countestimation,which 
began with the work of McClintock, has been the subject of many 
interesting studies. Vickery, for example, has given some interest­
ing mathematical arguments in support of the use of short counts. 
For more recent studies see Adams' Burch, White and Pe1z, and 
the unpublished report of the Bureau of Highways of the Depart­
ment of Public Works of Puerto Rico.* 

The population of short counts, shown in Figure 5, is a fundamental 
concept associated with the estimation of traffic volume. In this 
section two different types of sampling from this population are 
considered-namely, random sampling and systematic sampling. Point 
and interval estimates ofvolume are given for each type. 

5.7.a. The Population of Short Counts. Consider a particular 
roadwaylocation and a time period (T', T'), which will be called 
the base period. The length of this period is T" - T'= T, say. Divide 
the base period into N,, equal subperiods (to, t,), (ti, t,), ... I 
(tv,-,, tN,7). The length of each subperiod is represented by c. 
The time to equals T' and the time tA,, equals T". (The quantities 
described above are shown in Figure 5.) 

Lety,,Y21 . . .,yN, be the respective numbers of vehicles passing 
the location in the N, subperiods. For example:yl is the numberof 
vehicles passing the location in the first period, from t. up to the 
time tl;Y2 is the number passing in the second period, from t, up 
to the time t2; ... ; andyN. is the number passing in the last period, 
from tN,-, up to (and including) the time tv, (see Figure 5). 

*These and other short count studies have indicated that: i. Different pur­
poses require different degrees of accuracy; 2. Traffic follows daily and hourly 
patterns that are generally consistent and often predictable; e.g., the total 
dailyvolume does notvary materiallyamong different weekdays; 3. The heavier 
the traffic volume at a particular location, the greater the accuracy of short 
countmethods; 4. The morecounts (even though ofshort duration), the greater 
the accuracy; and 5. When traffic is not light or unduly erratic, counts of 
five or six-minute duration are entirely satisfactory. 
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The total number of vehicles passing the location in the entire 

base period is Y_ Yh = VI say. V is called the volume of traffic past 
h = I 

the location in the base period. Each of the quantitiesy,,Y2, ... 

yv, is called a short count. This terminologyis used since the length, 
c, of the subperiod associated with any of they's is usually "short" 
(e.g., about five or ten minutes). The subperiod is called a short-
count period. 

It should be noted that Vis related to the mean of the population 
of N, short counts yl, y2, . . ., yN.. More specifically, V equals 
N
 It,,, where y. is the population mean. Since N, is a known con­
stant (chosen by the investigator), the problem of estimating V is 
equivalent to that of estimating the population mean, u,. For ex­
ample, an interval estimate of V can be obtained from a random 
sample of short counts; such estimates are given in Section 5.7.b 
below. They are very simple modifications of formulas given in 
Section 3.5 for interval estimates ofpopulation means. 

The variance of the populationy, y2, . - ., yv, will be repre­
sented by a 2. The quantity a' is a critical parameter with regard

C C 
to both point and interval estimation of yc (and thus V). For ex­
ample, if a' is known to be 0*, then Vcan be estimatedwith perfect 
accuracyby observing only one of the NJ's. The reason is not hard 
to find. When a' = 0, all population elements,YD Y2, yN, are 
equal; in fact, each equals VINc. After observing the value of any 
one of they's, the investigator would multiply that value (namely 
VINc) by Nc to obtain the value of V. When U2 is relatively large, 
the error of estimate of V is not likely to be small unless extensive 
counting is done. 

The general problem under consideration in Section 5.7 is the 
estimation ofthe volume, V, by means of a sample from the popu­
lation of short counts. The subject of 5.7.b is estimation by means 
of a random sample of short counts. The subject of 5.7.c is estimation 
by means of a systematic sample of short counts. Estimation of V by 
means of stratified sampling is discussed briefly in 5.7.d. 

In practice, short-count periods are usually selected according 

*Of course in practice a2 would seldom, if ever, be equal to 0. 
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to some predeterminedschedule so as to be equally spaced apart. 
A systematic sample of short counts has this property of equal 
spacing, but a random sample does not; thus there is a serious 
question as to the practicality of drawing a random sample of 
short counts. Although the results set forth in 5.7.b are based on 
random sampling, they are nevertheless useful since they indicate 
the relation between accuracy ofvolume estimates and the number 
ofshort counts obtained. 

5.7.b. Estimation of Volume By Means of a Random Sample of 
Short Counts. Let TI, T2, . . ., T,, be a random sample (drawn 
without replacement) from the population yi, Y2, .. ., yN, de­
scribed in 5.7. a above. Let Y, be the mean of the sample. 

5.7.b.l. Point Estimation of Volume. A point estimate, ]
' of V is 

Nc T, (5:15) 

The expected value of f7 is N, u, V; thus V is an unbiassed 
estimate of V. The variance, a;,V of is 

a2 = N
2 
 a' 
N- n
 (5:16)
_N
l 

since u;=N.2 a! (see Section 3.5).V rc 
5.7.b.2. Interval Estimation of Volume. When cc can be regarded as 

known and the distributionof Tc is approximatelynormal, formula 
(5:17) below gives approximate lower and upper 100A percent 
confidence limits for V: 

(jNc - n
V' = Nc Tc N, cc 

-,,In c 
(5:17) 

V" = Ac Yc + z.Nc 
Nc - n
 
,In A
Nlj' 

where a = (1 + 2) /2 and z,, is the I 00a percent point of the standard 

normal distribution. Formula (5:17) is obtained from formula 

(3:9) by simply multiplyingy' and p" in (3:9) by Nc. The remarks 
in Section 15 regarding the validity of (3:9) also apply to the 

validity of (5:17). 
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Example. Suppose that from a four-hour base period a random 
sample of 20 short counts is drawn-the length ofeach short-count 
period being five minutes. Suppose also that the sample mean 
equals 90. Finally, suppose that past experience suggests that the 
population standard deviation, a,, equals 10. Find approximate 
lower and upper 95 percent confidence limits for the volume, V. 
In this example N, = (1 x 60) /5 = 48, n= 20, T, = 90, and a,, = I 0. 
Substituting in (5:17) one obtains the following results: 

V' (48) (90) - (1.96) (48) 
 10 
 28 

V_20) 

4320 - 162.4 4158, 

V" 4320 + 162.4 4482. 

An approximate 95 percent confidence interval for Vis therefore 

4158 < V< 4482. 

When the value ofa, is unknown and the distributionof T. can 
be regarded as approximatelynormal, formula (5:18) below gives 
approximatelowerand upper I OOA percentconfidence limits for V: 

NS, 

N,-n
V' N,
 t - t. V(n- 1) _J), 

(5:18) 

V- N
 + t. NS, 
[N.-n)' 
I/ (n - 1) 
K
71 

where a = (I + A) /2, t. is the 100a percent point ofthe t-distribution 
with (n - 1) degrees of freedom, and Sy is the sample standard 
deviation. Formula (5:18) is obtained from formula (3:10) by 
multiplying y' and ju" in (3:10) by N,. Formula (5:18) is valid 
whenever formula (3:10) is. 

5.7.b. 3. Sample Size ForRelative Error ofPoint Estimate To Be Within 
aPreassigned Amount (With High Probabiliy). In setting up a schedule 
ofshort counts one may wish to know how many periods to select 
so that the relative error of estimate is likely to be small. In other 
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words, one may wish to determine the sample size, n, so that there 
is a "high" probability that the following inequalityis true: 

d < < + d, 
V ­

where d is a "small" fraction (e.g., 0. IO). Let n' be the least value 
of n such that the probability is at least Z, say, that the above 
inequality holds. (In practice one might choose Ato be, say, 0.75, 
0.90, or 0.95.) It can be shown that n' is (approximately) the 
smallest value ofn satisfying the following inequality: 

N 3Z 2a 2 n > C a C (5:19)
N2 a2 Z2 + dI VI (Nc - 1) 

C C a 

where V is the volume, a = (I + A) /2, z,, is the I00a percent point 
of the standard normal distribution, and a2Cis the variance of the 
short-count population. This result is based on the assumption 
that the distribution of YC (and thus that of ]
) is approximately 
normal. If the functional form of the distribution of J
 cannot be 
regarded as known (at least approximately), the quantity z,, in 
(5:19) should be replaced by I IV (I - A); in general this leads to a 
conservative value of W. 

It is evident that formula (5:19) cannot be used in practice 
unless there is someinformation available (in advance ofsampling) 
regarding V* and a'. Two assumptions will be made regarding 
the available information about V and a'. These assumptions, 
which are discussed below, lead to a modified form of (5:19) that 
is generally useful. The first assumption is that there is a known 
lower bound, VL, on V, where VL > 0. The second assumption is 
that 

LT2 V (5:20) 
c Nc 

*Of course, this does not mean that Vwould be known precisely. If V were 
known precisely (in advance of sampling), there would be no need to estimate 
V and thus no need to obtain short counts. 
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With these assumptionsit can be shown that n' is (approximately) 
the smallest value of n satisfying the following inequality:* 

n > N, z'. (5:21) 
2Za+d 2 

Engineering considerationsindicate that the assumption stated 
in (5:20) is satisfactory if there are no marked changes in the 
intensity oftraffic flow during the base period. It is also ofinterest 
to assume that y 1, Y21 . . ., yx, form a sample of size V from a 
multinomial population having a probability of I/jV, for each of 
its N, categories. This alternative assumption leads to simplifica­
tions in the sampling theory associated with traffic-volume estima­
tion. For example, formula (5:21) can then be derived in a very 
simple way. Another interesting consequence of this assumption 
is that the expected value of the variance of they's is equal to the 
quantity on the right-hand of (5:20). 

It is clear from (5:21) that the assumption of a known positive 
lower bound VL (on V) is important. If VL were 0 (which, of 
course, is unlikely), then the right-hand side of (5:2 1) would equal 
N,, and so the smallest sample size satisfying (5:21) would be N
. 
This would mean that counting should be done throughout the 
base period to achieve the required accuracy. 

Example. Suppose that one wishes to estimate the volume over 
a four-hour base period to within 10 percent relative error with a 
probability of at least 0.95. Suppose also that the volume can be 
assumed to be at least 2,800. Finally, suppose that five-minute 
short counts will be used. Find the minimumsample size necessary 
to meet the requirements stated above. In this example c = 5 
minutes, N,=(4x6O)/5=48, VL=2800, A=0.95, a=(1+0.95)/2, 
and z,,=1.96. Substituting in (5:21) one obtains the following 
inequality: 

(48) (1.96)2

> (1.96)2+(O.OF) (2800) 5.79.


*In advance of sampling this inequality could be used to obtain a bound on 
the relative error of P (with probability A). 

http:z,,=1.96
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It follows that the minimum sample size, n', that meets the re­
quirements is 6. Since the length of each short-count period is 5 
minutes, the total counting time would be 6 x 5 = 30 minutes. The 
ratio of the length of the base period to the total counting time 
would therefore be 240/30 = 8; thus the percent of time counted 
would be (30/240) 100 = 12.5. 

5.7.c. Estimation of Volume by Means of a Systematic Sample 
of Short Counts. In Section 5.7.b above the type of samplingunder 
consideration was random sampling. In the present section a dif­
ferent type of sampling-namely,systematic sampling-is considered. 
A new description of the population of short counts is given to 
simplify the description of this type of sampling. After these de­
scriptions are given, point and interval estimation of volume will 
be considered. The final topic of Section 5.7.c is the design of a 
sample so that with high probability the relative error of estimate 
does not exceed a preassigned amount. 

5.7.c.l. The Population and the Sampling Procedure. Divide the total 
base period (T', T") into n equal periods, and divide each of these 
periods into k equal subperiods (see Figure 6). Let the length of 
each subperiod be represented by c. It is clear that nkc = T, where 
T is the length of the base period. Each of the subperiods is a 
short-count period. It will be convenient to represent these nk 
short-count periods as (1, 1), (1, 2), . . ., (1, k), (2, 1), (2, 2), - . ., 
(2, k), . . ., (n, 1), (n, 2), . . ., (n, k); for example, (i, j) represents 
thejth short-count period in the ith group of short-countperiods 
(i= 1, . . ., n;j= 1, . . ., k). Letyij be the numberofvehiclespassing 
a roadway point in the short-count period (i, j). The set of nk 

nurnbersyIIY121 ... Ylkl ... 
 Y. I I Yn 2, - - - I Y.k is the population 
ofshort counts (see Figure 6). The volume, V, over the base period 
is the sum of theyi,'s-i.c., 

k 

V = Y Y- Yu. 
i=1 j=1 

The samplingprocedure is as follows: 
(1) Select one ofthe first k short-count periods (1, 1), (1, k) 

purely at random. To accomplish this one se'lects an integer, say 
j', purely at random from 1, 2, . . ., k; the short-count period 
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T" - T'= T, Elements of Sample Described in Diagram above:


n =Number of Groups, Ylj')Y2j') - - YYnj11


k =Number ofShort-Count Periods Sample Sum:

in Each Group, Y1j1 +Y2j'+ +Ynj'= WF' say (j'= 1, k), 

C= Length of Each Short-Count Period, Set of Possible Sample Sums: WI, W2, Wk, 

nke = T, Volume = WI + W2 + - - - + Wk = V, 

Population Elements: Point Estimate ofVolume: ]
=kWj,, 

Y 1 1) Y1 2) ... )Ylk, ',Y.IY.21 -,Ynk, Variance of ]
: a
'=VU2' where u' is the 
k k 

Volume= Sum of All Population Elements, Variance of WI, W,2, . . . , wk. 

Figure 6. Schematic Representation ofthe Base Period, the Short-Count Periods, 
the Population of Short Counts, and the Systematic Sample. 
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-(I, j') is then a short-count period selected at random from (1, 
1),. . ., (1, k). (See the illustrative example in 5.2.a. 1.) 

(2) Then select the short-countperiods (2j'), (3j), . . ., (nj). 
(3) Count the number of vehicles in each short-count period 

selected-i.e., in (1, j'), (2, j'), . . ., (n, j'). These counts are ylj,, 
Y2jo 	 . . I Yj,. Thus in each of the n groups one out of the k sub-
periods is counted. 
Since the first short-count period selected-namely (1, j')-is 
selected at random, the sampling procedure involves a "random 
start." All other selections of short-count periods are determined 
by the outcome of the random start. It should also be noted that 
the short-count periods selected are equally spaced apart-the 
spacing being k short-count periods (see Figure 6). In a sense the 
sample size is n; however, the sample is systematic rather than 
random. Because of its systematic feature such a sample is more 
suitable for practical use than a random sample. 

5.7.c.2. PointEstimation of Volume. When a sample has been drawn 
in accordance with the procedure described above, a point esti­
mate, P, ofthe volume, V, can be expressed as follows: 

k Wj,, 	 (5:22) 

where Wj, yij,. Wj, is simply the sum of the counts that make 

up the sample. It should be noted that WI, W2,, . . ., Wk are the 
possible values ofthe sample sum in advance ofsampling. Selecting 
a "start" at random implies selecting one of the W's at random. 
It should also be noted that W, + W2 +... + Wk = V; hence 

V A5 	 (5:23)
k 

where 1Uk is the mean of the W's. 
The expected value of P is k9k = V (see (5:2 3)). This means that 

Pis an unbiassed estimate of V. The variance, a', of P is 

V k 2 ak2	 (5:24) 

where Uk' is the variance of W,, W2, Wk. 
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From an engineeringpointofview it seems satisfactory to assume 
that 

a2 V 0
 I (5:25) 
k 
k) ( k ), 

provided there are no marked changes of traffic-flow intensity in 
any one ofthe n periods of the base period. From a theoretical point 
ofview it is ofinterest to make the following, alternative assump­
tion: in the ith period (i= 1, . . ., n) theyij's form a sample of size 
Vj* from a multinomial population having a probability of Ilk 
for each ofits k categories. An interesting consequence of this as­
sumption is that 1
 (defined in (5:22)) is approximately normal 
with mean V and variance V(k - 1). (This property of 1
 is used 
in 5.7.c.4 below.) Another interesting consequence is that the 
expected value of the variance of the W's is equal to the quantity 
on the right-hand side of (5.25). 

5.7.c.3. Interval Estimation of Volume. Conservativelower and upper 
100 (I -I IB') percent confidence limits for the volume, V, are 
as follows: 

V, = V - B 
(B > 1) (5:26) 

where up is defined in (5:24). Such an interval can be used when 
the value ofa p is known or when a satisfactory engineering estimate 
of it is available. 

It is also of interest to have confidence limits for V when there 
is good reason to assume that a' V (Ilk) (I - Ilk). This assump­
tion is stated in (5:25) and discussed immediately below (5:25). 
When the assumption holds, conservative lower and upper 100 
(1 - IIB') percent confidence limits for V are as follows: 

k 
V, is the volume associated with the ith period (i.e., Vi =lyij). The quan­

j=1 
tities V,, V,, need not be equal; in fact, they may vary considerably from 
one part ofthe base period to another. 

Formulas (5:Q6) and (5:27) are based on the Bienaym6-Tchebycbeff in­
equality. (See Section 3 of the Appendix.) When P is approximately normal 
with mean V and variance V(k - 1), a slight modification of formula (5:27) 
provides approximate 1002 percent confidence limits for V. The modification 
consists of replacingB by z. (a = (I +A) 12). 



CASE STUDIES AND APPLICATIONS 99 

V, 1
 + B 2 (k-1) _B
(P(k-l) + B' (k- I2 
2 4 

(5:27) 

V- 1
 + B (k 1) +B f7(k-1) + B (k I 
2 4 

Example. Suppose that an engineer has obtained a systematic 

sample of five-minute short counts from a two-hour base period, 

as follows: 

(1) The base period was divided into four 30-minute periods, 

and each of these four periods was divided into six 5-minute 

short-count periods. 
(2) A short-count period was selected at random from the first 

six, and the corresponding short-count periods in the three re­

maining 30-minute periods were selected. The sum of the four 

counts was 405. 

On the assumption stated in (5:25), find a conservative 75 percent 

confidence interval for V. In this example k = 6, B = 2 (since 1 ­

1/22 = 0. 75), and f7= 6 x (405) = 2430. Substituting in (5:2 7) one 

obtains the following results: 

Vl
_ 2430 + 4 x 	5 _ 2 2430 x 5+ 4x25) 
2 4 

2440 - 2 V (I 2175) --- 2440 - 221 = 2219, 

V" 2440 + 221 	= 266 1. 

The required confidenceinterval is therefore 

2219 < V< 2661. 

5.7.c.4. Choice ofk ForRelative Error of Estimate to be Within a Preas­

signed Amount (With High Probabiliy). The problem considered here 

is that ofchoosingk so that there is high probabilitythat the relative 

error of ]
 is not greater than a preassigned amount, d. This prob­

lem is similar in some respects to the one treated in Section 5.7.b.3. 

The solution, given in (5:29) below, is based on two assumptions. 

One is the special assumption introduced in the discussion below 

(5:25); the other assumptionis that there is a known lower bound, 

VL, on the volume, V. 
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It is required that a value, say k', ofk be chosen so that the proba­
bility is at least Athat 

_d < V_ V < + d. (5:28)
V ­

The value of Ais specified in advance of choosing k. Under the as­
sumptions stated above the required value, say k', of k is the largest 
value of k satisfying the following inequality: 

VL d 2 

k < I + (Z.) 2' (5:29) 

where VL is the known lower bound on V, z. is the 100a percent 
point of the standard normal distribution, and a= (I +A) /2. * 

Example. Supposean engineer wishes to estimate the volumeover 
a four-hour base period to within 10 percent with a probability 
of at least 0.95. Suppose further that it is reasonable to assume that 
the volume V is at least 2800. What value of k is required? In this 
example VL=2800, d=0.1, and z. = 1.96. Substituting in (5:29) 
one finds that 

0.01 
k < 1 + 2800 - I + 7.29 = 8.29.

1.96 2 

The required value k' is therefore equal to 8. (The reader may 
find it interesting to compare the results ofthis example with those 
of the example given in 5.7.b.3.) 

Since k represents the ratio of the total time in the base period 
to the total time actually counted, the selection of 8 as the value 
of k would mean that the total counting time equals one-eighth of 
the base period. Since the length ofthe base period is 240 minutes, 
the total counting time is (1/8) (240) =30 minutes. The engineer 
would still have some choice as to the length, c, of the short-count 
period and the number, n, of short counts obtained. For example, 
he could choose c to be 5 minutes and n to be 6 or choose c to be 
IO minutes and n to be 3. Thefirst choice wouldlead to a systematic 

*If the assumption in (5:25) is preferred to the one introduced below (5:25), 
a conservative value ofk can be obtained by a slight modification of (5:29). The 
modificationconsistsofreplacingz,,byB(B> 1); andthevalueoftheprobability 
involved is then 1 - 11B2 instead of A. 
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sample ofsix 5-minute short counts, and the second would lead to 
a systematic sample of three 10-minute short counts. It should be 
remarked,however, that there are theoretical reasonsfor preferring 
the choice of six 5-minute short counts (see the discussion below 
[5:25]). 

5.7.d. Estimation of Daily Volume Using Stratified Sampling. 
Stratified sampling is often used in dealing withvery heterogeneous 
populations. The aim in stratificationis to obtain strata such that 
each stratum is less heterogeneous than the original population. 

The procedures associated with stratified sampling can be de­
scribed as follows (see McCarthy [p. 282]): 

1. Divide the population into mutually exclusive and exhaustive 
subgroups (or strata); 

2. Draw a sample from each stratum; 
3. Make an estimate for each stratum, and combine these 

estimates to obtain an estimate for the entire population. 
It is natural to consider the use ofstratified sampling in estimat­

ing the daily volume of traffic since the population of counts as­
sociated with traffic throughouta given day is quite irregular. The 
traffic density shows conspicuous "rises" and "falls" which must 
be taken into account. Practical experience suggests that it would 
be suitable to divide the population into, say, four strata. These 
strata would correspond to the followingperiods ofthe day: morn­
ing rush period, midday, afternoon rush period, and mid-evening.* 
Each of these periods can be regarded as a base period for which an 
estimate of volume can be made along the lines indicated in 
Sections 5.7.c (or 5.7.b in some cases). An estimate of daily volume 
could then be made by combining the four separate estimates. 

5.8. Concluding Remarks 

The ideas developed in the first four chapters have been used ex­
tensively in Chapter 5. Each of the preceding sections in this 
chapter gives traffic engineering applications of sampling tech­
niques or concepts, and each (except 5.2) gives one or more ap­
plications of estimation or significance testing. (The reader may 

*In general any part of the day in which there is non-negligible traffic 
would be included in one of these periods. 



102 ELEMENTARY SAMPLING 

be interested to note thatpoint estimation is involved in Sections 5. 1, 
5.3, 5.4, 5.5 and 5.7, that interval estimation is involved in 5.1, 5.3, 
5.5, and 5.7, and that significance testing is involved in 5.5 and 5.6.) 

In exploring the relation between sampling and traffic engineer­
ing it has been necessary to go into great detail on many statistical 
and engineering matters. As a result, the pages of this book contain 
many formulas and a large amount of technical discussion. It re­
mains to provide the reader with an over-all view ofthe basic role 
ofsamplingin traffic engineering. The remarks below are designed 
to meet this need. 

Throughout the course of his work in planning, designing, and 
operating transportation facilities, the traffic engineer needs to 
obtain information about the characteristics of populations with 
which he is concerned. Such information is used in drawing con­
clusions or making decisions. By means of sampling, the engineer 
can obtain useful information regarding characteristics of these 
populations;however, this informationis almost always incomplete 
and therefore involves some uncertainty. (In order that there be 
no uncertainty it is necessary that the sample consist of the entire 
population; however, owing to limitations of time, money, man­
power, or other resources, it is usually not feasible to draw such a 
sample.) Procedures of estimation and significance testing make it 
possible for the engineer to take into account the uncertainty as­
sociated with the information obtained from sampling. It is im­
portant that the uncertainty be taken into account correctly, since 
failure to do so may lead to wrong conclusionsor unsound decisions. 
By proper use ofsampling the engineer can control the uncertainty 
associated with the informationobtained. 

The methods and concepts presented in this book are quite 
general; thus they are powerful tools for the traffic engineer who 
understands how to apply them. Many applications of these tools 
are shown in the illustrative examples given throughout the book; 
however, their range of applicability includes far more than the 
specific subject matter of the examples. Equipped with these tools, 
the traffic engineer can grasp the statistical aspects of his problems 
more readily and thereby deal with his problems more effectively. 



Appendix 

1. Populations and Samples 

Population. A population is a set (collection) of objects. The set 
may be finite or infinite. 

Sampling. Sampling a population is the selection (drawing) of 
one or more elements of the population. To select or draw an ele­
ment does not necessarily mean that the element is removed from 
the population. It may mean only that the element is observed. 
Almost all the sampling considered in this book is random sam­
pling.* It should also be remarked that in this book two slightly 
different meanings are associated with the phrase random sampling. 
The usual meaning is that one or more random variables are as­
sociated with the sampling procedure-in a manner indicated in 
the paragraph immediately below. (For a definition of a random 
variable see Section 3 of the Appendix.) The other meaning as­
sociated with random sampling is used only in the special case 
where the sampling is without replacement from a finite populations 
Such sampling is said to be random if all possible samples have the 
same chance of being selected. 

Sample. A sample can be regarded as a set of elements drawn 
from a population. Unless otherwiseindicated, the elements of the 
population are assumed to be numbers. When the sampling is 
random (in the first sense described in the paragraph above), the 
sample can be regarded as a set of observed values of one or more 
random variables. For the most part in this book a randomsample 
is considered to be simply a set of observed values, x,, . . ., x., of a 
random variable X that have been obtained independently. 

The remarks above indicate two different ways of describingthe 
source of a sample. One can say that the sample comesfrom apopula­

*Techniques of random samplingare presented in detail in Section 5.2. 
tWhen sampling is without replacement, no element drawn is returned to the 

population. When sampling is with replacement, each element drawn is returned 
to the population before another drawing is made. 
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tion or that it consists of observed values of a random variable. A third 
way is to say that the sample comesfrom a distribution. The third mode 
of expression is connected with the fact that a random variable is 
characterized by a distribution. (See Section 3 of the Appendix 
for a description of a distribution.) 

2. Functions of Samples 

With regard to the definitions given below it is assumed that the 
sample consists of n numbers, say xi, X,,. 

Sample Sum. The sample sum is 

X 1 + . . + X,, = S (X), say. 

Sample Mean. The sample mean, say 9, is 

xi + . . . + X,. (2) 
n 

Note that 9= S (X) /n, thus S (X) =n 9. 

Sample Variance. The samplevariance, say Sx, is defined as follows: 

S2 (Xl_g)2 + ... + (Xn _.i) 2 

X - n 5 (3) 

where 9 is the sample mean. It can be shown easily that 

S2 X 2 + ... + X2 
X = I _ n_ .2. (4) 

n 

Note: Some writers define the sample variance as 

(Xi _R)2 + . .. + (X._R)2 

(n - 1) , (n > 

Sample Standard Deviation. The sample standard deviation, Sx, is 
defined as follows: 

((XI -9)2 + + (X._ g)2
S., = + (5)

n 
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It should be remarked that the square of the sample standard 
deviationis the sample variance. (See also the note above regarding 
the sample variance.) 

Order Statistics. Let x(j), X(2), x(,) be an arrangement of xj, 
... I x,, in increasing order of magnitude; thus XM < X(2) < ... < 

x(,,). The quantities X(j), . . ., X(,) are called order statistics. x(,) is 
called the rth order statistic. For example, the order statistics ofthe 
sample 7, 5, 12, 2, 9 arex(j) = 2, X(2) = 5, XW = 7, X(4) = 9, X(-,) = 12. 

Sample Median. Let X(1) <X(2) < ... <x(,,) be the order statistics 
of a sample of size n. The sample median, say 9, is defined as 
follows: 

X(kl 1) when n= 2k + I (k = 0, 1, 
(6) 

X X(k) + X(k+ 1) when n= 2k (k = 1, 2, . . .). 

In words: when n is odd (say n = 2k + 1), 9 is the (k + 1) th order 
statistic; when n is even (say n= 2k), 9 is the average ofthe kth and 
(k + 1) th order statistics. In the illustrative example above, the 
median of the sample ofsize 5 is XW = 7. 

Sample Range. The sample range is defined as the difference 
between the largest and smallest elements of the sample. In terms 
of order statistics of a sample of size n, the sample range is X(n) ­

x(j). In the illustrative example above, the sample range is X(5) ­

x(i) = 12 - 2 = 10. 
For every sample the standard deviation, S,, and the range 

satisfy the following inequality: 

Sx < X(") - X(J) (7) 
2 

Sample Cumulative Distribution Function. The sample cumulative 
distribution function, say F.(x), is defined as follows: 

(8) 
F.(x) = numberofvaluesamong (xi,..., x.) ::-< x 00 < X < + 00). 

n 

It is apparentfromthis definitionthat0 <F.(x) :!
 1 co <x < + oo). 
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3. Random Variables and Probability Distributions 

Random Variable. A random variable is a function defined on a 

sample space; more specifically, it is an assignment of a number 

to each point of the sample space (see Feller, p. 199). The set of 

numbers assigned is the set ofpossible values ofthe random variable. 

A unit amount of probabilityis spread out (distributed) over the 

set of possible values. This distributionis called theprobabiliy dis­

tribution of the random variable. The probability distribution can 

be specified by the cumulative distributionjunction or by thefrequency 

function. 

Cumulative Distribution Function of a Random Variable. The cumula­

tive distributionfunction, say F (x), ofa (one-dimensional) random 

variable X is such that 

F(x) = Pr (X< x) (- oo < x < + oo). (9) 

(The notation "Pr (X<x)" means "the probability that X is less 

than or equal to x".) F(x) is also termed simply the distribution 

function of X. 

The Frequency Function of a Random Variable. When the possible 

values ofa random variable X form a discrete set, say xj, X21 etC-1 

the function 

Pr (X= xj) = f (xj), say, (j = 11 2
 ... (10) 

is called the frequency function ofX. X is called a discrete random 

variable. When the cumulative distribution function F(x) of X is 

differentiable, X is called a continuous random variable. The 

function 

d F(x) 
= f (x), say, 

dx 

is called the probability density function of X. f (x) is also called the 

frequeng function of X. Hoel (p. 24) indicates that it is becoming 

more and more common to use the termfrequeneyfunction for both 

continuous and discrete variables. The expected value (also called 

the mean) ofa discrete variable X is defined as 

X1 PX 1) + X2 PX2) + - - - = mx, say, (12) 
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wheref(xj) is the frequency function of X (j 
called the mean of the distributionof X. 

1, 2, mx is also 

The variance of X is defined as 

(XI - M,,)'f(Xl) + (X2 - M.)'f(X2) + a', say. (13) 

The standard deviation of X is defined as the (non-negative) square 
root of the variance. If X is a continuous random variable, the 
definitions of its expected value (mean), variance, and standard 
deviation are similar, respectively, to the definitions above. (It 
should be remarked, however, that some random variables do not 
have a mean or variance.) 

Let (a, b) be the interval of smallest length containing all pos­
sible values of X (and assume that (a, b) is a finite interval). The 
length, b-a, is called the range of X. (Sometimes the interval 
(a, b) is called the range of X.) It is ofinterest that 

a < (b -a) 
2 (14) 

Percent Points of a Random Variable. Let F(x) be the cumulative 
distribution function of a random variable X, and suppose that 
X,, is a possible value of X such that 

F (Xa) = a (O < a < (15) 

The quantity Xa is termed the 100a percent point of X.* For ex­
ample, the median of X is the number Xa when a=0.50; thus the 
median of X is a number such that exactly half the population is 
less than or equal to the number and, of course, exactly half ex­
ceeds the number. Some other well-known examples of percent 
points are X. 2 5 and X.,, which are called the lower and upper quar­
tiles, respectively. When F(x) is continuous and increasing at 
every possiblevalue ofX, there is a unique xa for any given a. 

The "Center" and "Spread" of a Distribution. In a sense the median 
of a distributioncan be regarded as the "center" ofthe distribution 
and the range can be regarded as the "spread" of the distribution. 
In another sense the mean and standard deviation can be regarded 

*x. is also termed the 100a percent pointof the distributionofX. 
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as the "center" and "spread," respectively. The Bienaym& 
Tchebycheff inequality indicates how the mean and standard 
deviation represent the "center" and "spread." This inequality 
is as follows (see Cram6r p. 183): 

1 
Pr (-Ba., < X -m., < Bu,,) > 1- Ti , (B > 1), (16) 

where mX and a., are, respectively, the mean and standard devia­
tion of X.* For example, it follows from formula (16) that the 
probability is at least 0.75 that X will be within two standard 
deviations of its mean. (Note that I - 11B 2 =0.75 when B=2.) 
The followingtable gives values ofthe probabilitybound, 1 - IIB', 
for several values of B: 

B 1.0 1.5 2.0 2.5 3.0 

1_ JIB2 0.000 0.556 0.750 0.840 0.889 

It is interesting to compare the values of the bound in formula 
(16) with the exact values of Pr (-Ba.,<X-m.,<Bax) when X 
has a normal distribution. The exact values, obtained by means 
ofAppendix Table 1, are as follows (to three decimal places): 

B 1.0 1.5 2.0 2.5 3.0 

Pr (-Bo-.,<X-m.<Bor.,) 0.683 0.866 0.954 0.988 0.997 

4. Some Important Probability Distributions 

The Binomial Distribution. Let p be the probability that an element 
selected at random from a binomial population will be a "success" 
(see Section 2.2). Let X be the numberof"successes" in n independ­
ent random selections ofan element from the population. 

The frequencyfunction of X is 

f(x) = C' p-" (I -p) n- x (x = 0, 1, n). (17) 

(Note: C,,=n!l[x! (n-x)!], x=O, 1, ... , n.) The mean and vari­
ance of X are np and np (1 -p), respectively. 

*It should be remarked that formula (16) is valid for any random variable 
having a finite mean and variance. 
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The Poisson Distribution. Let X have the Poisson distribution. 
The frequency function ofX is 

e-_M mX 
f(x) = - X! , 2,. . 

where mis the expected value (mean) ofX. (Note: e= 2.71828 
The Normal Densiy Function. Let X have the normal distribution. 

The probabilitydensityfunction associated with this distributionis 

f(x) = I e-(x-u) /217 00 < X < + 00), (19)
uV(27r) 

where u is the expected value ofX and U2 is the variance ofX. 
The standard normal densityfunction, say g (x), is 

g (X) 
 I 
 e - X 2/2 (20)
V(27r) 

which is a special case off(x), arising when u =0 and a = 1. 
The Hypergeometric Distribution. Consider afinite binomial popula­

tion having N elements of which N, are "successes" and N-N, 
are "failures." The population proportion of "successes" is N11N. 
This proportion can be regarded as the parameter of the popula­
tion since Nis assumed to be known. Suppose a sample of size n is 
drawn without replacement, and let X be the number ofsuccesses in 
the sample. The frequency function of X is 

N JV_ N 

f(x) 
Cx C
n 
 x 

(21) 
C. 

wheren<Nandx=h, ... ,H(h=maximumof0andNl+n-N; 
H=minimum of N, and n). This is called the hypergeometric 
distribution. The expected value of X is nN, IN and the variance 
ofX is n(NIIN) [(N-NI)IN] [(N-n)I(N- 1)]. The quantity Xln 
is an unbiassed estimator of the parameter N11N. 

It should be remarked that if the sample is drawn with replace­
ment, the probability distribution of the number, X, of successes is 

RX) = CX" PX (I _P) 11-X, (22) 
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where p = N, IN and x = 0, . . ., n. This is a binomial distribution. 
The Multinomial Distribution. Consider a population having ex­

actly k kinds ofelements. Let p, be the probability that a randomly 
drawn element is ofthe ith kind. (Of course, PI +P2 + - - - +PI 
 1 ') 
Suppose a sample of size n is drawn from the population, and let 
N1, N2, . .. , Nk be the numbers of elements of the first, second, 
. . ., kth kinds, respectively, in the sample (Ni + N2 + . . . + Nk = n). 
It can be shown* that 

Pr (NI = ni, N2 = n2l Nk = nk) 
GI! ... 

n 
n,!) PI

.1 
. . . pk

'k, 

(n, + n2 + + nk n). (23) 

This is the so-called multinomial distribution. When k= 2, the multi­
nomial distributionreduces to the binomial distribution. 

The Unifornz Distribution. Let X have the uniform distribution. 
The probabilitydensity function associatedwith this distributionis 

f(x)=I, (O<X<1). (24) 

The cumulative distributionfunction ofX is 

F (x) = x, (O < x < 1). (25) 

The mean and variance ofX are 1/2 and I/ 12, respectively. 

*If the population is finite, the sampling is assumed to be with replacement. 
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Appendix Table 1. The Cumulative Standard Normal Distribution 

This is a table ofthe function 

F (x) fg (t) dt, 
00 

whereg (t) is the standardnormaldensityfunction given in formula 
(20) in the Appendix. It should be noted that F (x) =Pr (X< x), 
where X has the standard normal distribution. The values of x in 
the table are 0, 0.0 1, . .. , 3.49. To obtain values ofF ( - x) use the 
equation F(-x) =I -F(x). Beneath the main part of Appendix 
Table 1 is a s upplementarytable givingvalues ofx for F (x) = 0.90, 
0.95, 0.975, etc. This supplementary table is similar to Table V in 
Chapter 3. (Table V is used in many examples in Chapter 3 (for 
instance, see the examples in 3.2.b)). 

Appendix Table 2. The Cumulative Chi-square Distribution 

This is a table of values of Z' (Chi-square) for various values of 
the cumulative X2-distribution, sayF(X2, n). n is called the number 
of "degrees offreedom" of the distribution. The values ofF(X', n) 
given in the table are 0.005, 0.010) 0.025, 0.050, 0.100, 0.250, 
0.500, 0.750, 0.900, 0.950, 0.975, 0.990, and 0.995. When n is 
larger than 30, 

X [z. +,/(2n- 1)]',
" - 2 

where X' is the 100a percent point of the Chi-square distribution 
and za is the 100a percent point of the standard normal distribu­
tion. For illustrations ofthe use of the Chi-square distribution see 
examples in 4.3.b. 
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Appendix Table 3. The Cumulative Student's t-Distribution 

This is a table ofvalues of t for various values of the cumulative 
Student's t-distribution, say F(t, n). n is called the number of 
"degrees of freedom" of the distribution. The values of F(t, n) 
given in the table are 0.75, 0.90, 0.95, 0.975, 0.990, 0.995, and 
0.9995. For n=oo, the Student's t-distribution is the standard 
normal distribution. This accounts for the fact that most of the 
entries in the last row of Appendix Table 3 also appear in the 
supplementary table beneath the main part ofAppendix Table 1. 
For an illustration of the use of Student's t-distribution see the 
first example in 3.4.a. 

Appendix Table 4. 2000 Random Digits 

This is a table of independently observed values of a random 
digit. Section 5.2 gives a definition ofa random digit and illustra­
tions of how to use Appendix Table 4. 



Appendix Table I-The Cumulative Standard Normal Distribution* 

0 

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879


0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389


1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319




1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767


2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936


2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986


3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998


x 1.282 1.645 1.960 2.326 2.576 3.090 3.291 3.891 4.417 
F(x) 0.90 0.95 0.975 0.99 0.995 0.999 0.9995 0.99995 0.999995 
2[1-F(x)] 0.20 0.10 0.03 0.02 0.01 0.002 0.001 0.0001 0.00001 

*This table is reproduced from Introduction to the Theory of Statistics by A. M. Mood, McGraw-Hill, New York, 1950. It is pub­
lished here with the kind permission of the author and publishers. 



Appendix Table 2-The Cumulative Chi-Square Distribution* 

0 X2 

n/F .005 .010 .025 .050 .100 .250 .500 .750 .900 .950 .975 .990 .995 

1 0.04 393 0.03157 0.03982 0.02393 0.0158 0.102 0.455 1.32 2.71 3.84 5.02 6.63 7.88 
2 O
0100 0.0201 0.0506 0.103 0.211 0.575 1.39 2.77 4.61 5.99 7.38 9.21 10.6 
3 0.0717 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8 
4 0.207 0.297 0.484 0.711 1. 06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9 
5 0.412 0.554 0.831 1.15 1.61 2.67 4.35 6.63 9.24 11.1 12.8 15.1 16.7 

6 0.676 .872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5 
7 0.989 1.24 1.0 2.1'7 2M 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3 
8 1.34 1.65 2.18 2.73 3.49 5.67 7.34 10.2 13.4 15.5 17.5 20.1 22.0 
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6 

10 2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2 



11. 2.60 3.05 3.82 4.57 5.58 7.58 10.31 13.7 17-3
 19.7 21.9 24.7 26.8 
12 3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3 
13 3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8 
14 4.07 4.66 5.-63 6.57 7.79 10.2 13.3, PA 21.1 23.7 26.1 29.1 31.3 
15 4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8 

16 5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3 
17 5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7 
18 6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2 
19 6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6 
20 7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0 

21 8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4 
22 8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8 
23 9.26 10.2 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 44.2 
24 9.89 10.9 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6 
25 10.5 11.5 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9 

26 11.2 12.2 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 41.9 45.6 48.3 
27 11.8 12.9 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6 
28 12.5 13.6 15.3 16.9 18.9 22.7 27.3 32.6 37.9 41.3 44.5 48.3 51.0 
29 13.1 14.3 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3 
30 13.8 15.0 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7 

*This table is abridgedfrom "Table of Percentage Points of the Z2 Distribution," Biometrika,Vol. 32, Part II (1941), pp. 187-191. 
It is published here with the kind permission ofthe author, Catherine M. Thompson, and the editor ofBiometrika. 



Appendix Table 3-The Cumulative Student's t-Distribution* 

0 t 

co n/F .75 .90 .95 .975 .99 .995 .9995 

I 
2 
3 
4 
5 

1.000 
0,816 
0.765 
0.741 
0.727 

3.078 
1.886 
1.638 
1.533 
1.476 

6.314 
2.920 
2.353 
2.132 
2.015 

12.706 
4.303 
3.182 
2.776 
2.571 

31.821 
6.965 
4.541 
3.747 
3.365 

63.657 
9.925 
5.841 
4.604 
4.032 

636.619 
31.598 
12.941 
8.610 
6.859 

6 
7 
8 
9 

10 

0.718 
0.711 
0,706 
0.703 
0.700 

1.440 
1.415 
1.397 
1.383 
1.372 

1.943 
1.895 
1.860 
1.833 
1.812 

2.447 
2.365 
2.306 
2.262 
2.228 

3.143 
2.998 
2.896 
2.821 
2.764 

3.707 
3.499 
3.355 
3.250 
3.169 

5.959 
5.405 
5.041 
4.781 
4.587 

11 
12 
13 
14 
15 

0.697 
0.695 
0.694 
0.692 
0.691 

1.363 
1.356 
1.350 
1.345 
1.341 

1.796 
1.782 
1.771 
1.761 
1.753 

2.201 
2.179 
2.160 
2.145 
2.131 

2.718 
2.681 
2.650 
2.624 
2.602 

3.106 
3.055 
3.012 
2.977 
2.947 

4.437 
4.318 
4.221 
4.140 
4.073 



16 0.690 1.337 1.746 2.120 2.583 2.921 4.015 
17 0.689 1.333 1.740 2.110 2.567 2.898 3.965 
18 0.688 1.330 1.734 2.101 2.552 2.878 3.922 
19 0.688 1.328 1.729 2.093 2.539 2.861 3.883 
20 0.687 1.325 1.725 2.086 2.528 2.845 3.850 

21 0.686 1.323 1.721 2.080 2.518 2.831 3.819 
22 0.686 1.321 1.717 2.074 2.508 2.819 3.792 
23 0.685 1.319 1.714 2.069 2.500 2.807 3.767 
24 0.685 1.318 1.711 2.064 2.492 2.797 3.745 
25 0.684 1.316 1.708 2.060 2.485 2.787 3.725 

26 0.684 1.315 1.706 2.056 2.479 2.779 3.707 
27 0.684 1.314 1.703 2.052 2.473 2.771 3.690 
28 0.683 1.313 1.701 2,048 2.467 2.763 3.674 
29 0.683 1.311 1.699 2.045 2.462 2.756 3.659 
30 0.683 1.310 1.697 2.042 2.457 2.750 3.646 

40 0.681 1.303 1.684 2.021 2.423 2.704 3.551 
60 0.679 1.296 1.671 2.000 2.390 2.660 3.460 

120 0.677 1.289 1.658 1.980 2.358 2.617 3.373 
00 0.674 1.282 1.645 1.960 2.326 2.576 3.291 

*This table is abridgedfrom Statistical Tablesfor Biological, Agricultural, and Medical Research, by R. A. Fisher and 
Frank Yates, Oliver and Boyd, Edinburgh, 1957 (5thedition). It is published here with the kind permissionofthe 
authors and publishers. 



Appendix Table 4-2000 Random Digits* 

Rows Digits 

0 

1 
2 
3 
4 
5 

49269 
33891 
23318 
57517 
41011 

27212 
03867 
79895 
55256 
75937 

46095 
09925 
70550 
50281 
22767 

37106 
06476 
81717 
51583 
50120 

64254 
82018 
28833 
96879 
95938 

27460 
45094 
30271 
05225 
49753 

49572 
59014 
15821 
42272 
63882 

51700 
67113 
14999 
05339 
99616 

27679 
44192 
88174 
20483 
69083 

12574 
00075 
62617 
57596 
38721 

6 
7 
8 
9 

10 

73889 
93877 
59141 
40998 
20279 

80236 
30345 
95585 
44137 
27414 

99531 
64882 
89552 
16144 
10589 

23053 
66660 
97247 
66300 
39860 

71237 
17026 
59325 
44091 
23000 

48861 
70364 
27848 
50018 
31767 

59046 
45676 
80058 
81364 
95618 

76283 
08039 
15950 
18211 
56738 

60538 
96228 
61481 
60294 
50332 

19732 
89936 
90906 
76559 
16936 

11 
12 
13 
14 
n 

70342 
52614 
27099 
74427 
92470 

92481 
36950 
90956 
99523 
18840 

30702 
41796 
65448 
74904 
76011 

76264 
45403 
03080 
28017 
93109 

62619 
79262 
75795 
45898 
14344 

68678 
02887 
29753 
57232 
55614 

62284 
53596 
97699 
48525 
50284 

83112 
61308 
80872 
07086 
15865 

93032 
20738 
23830 
26805 
19458 

55203 
34811 
85882 
14533 
35856 

16 
17 
18 
19 
20 

13464 
73649 
99074 
88577 
93966 

53679 
ON04 
23244 
30231 
60437 

64603 
87977 
59516 
25267 
62
39 

51571 
879
§ 
50552 
84622 
58113 

56124 
70859 
31602 
31449 
32526 

79107 
40909 
41899 
12086 
38708 

N596 
M95 
06347 
56461 
81.607 

89572 
87877 
27821 
22962 
51016 

78198 
75B8 
68970 
78213 
01695 

57121 
62810 
48596 

4 3 
90110 



21 04649 59990 23979 03855 10297 46516 96092 82305 30760 78756 
22 04967 8287
 04773 86651 16648 53133 82439 78851 49766 24553 
23 15273 36417 01901 33396 76979 25920 33372 62695 11982 40911 
24 06230 91696 43907 17827 30332 89203 32215 91806 23080 49162 
25 09174 11548 54590 75803 66108 73682 62324 26017 72716 33887 

26 01285 31604 71039 24337 535i4 58964 89901 22040 92751 12617 
27 37007 05523 61672 62557 98540 26094 60284 19621 96230 38044 
28 06545 09458 42988 02913 86345 67936 90174 40840 44991 24256 
29 34989 74086 13652 68706 01363 04294 88008 78693 83068 94746 
30 00221 89299 53186 05930 61889 51341 45412 58860 72568 11381 

31 59785 36887 10690 31347 93326 96267 86987 57565 86836 49071 
32 90331 41248 34629 30240 27270 03864 84308 03035 61369 36902 
33 51017 44409 17120 23823 36460 63359 08333 63173 19134 06493 
34 00303 18550 26191 19051 81502 66343 06737 90430 65478 58982 
35 82484 16483 47704 44640 68322 44548 72787 02335 28749 39320 

36 05436 98146 56596 00812 51445 35533 35478 47573 38414 25542 
37 38032 13442 42983 97207 77854 57806 81616 52828 79429 47389 
38 96795 57764 19605 24767 63253 18809 65093 44449 22952 76872 
39 30983 38948 09310 48336 87651 27110 84427 76209 56412 12760 
40 16747 14551 82626 31224 98636 75100 84882 79479 83420 05347 

*This table is a part of page 13 of A Million Random Digits with iooooo Normal Deviates by The Rand Corporation, The 
Free Press, Glencoe, Illinois, 1955. It is reproduced here with the kind permission of The Rand Corporation and the 
publishers. 
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